FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT

IN SUPPORT OF ZONING BY-LAW AMENDMENT

2343 Eglinton Avenue West

City of Toronto York District

8395 Jane Street, Suite 100 Vaughan, Ontario L4K 5Y2 Tel: (905) 326-1404

File Number: 23073

Prepared For:

1764174 Ontario Inc.

3080 Dufferin Street Toronto, ON M6A 2S6

4		
3		
2		
1	Issued for Zoning By-law Amendment	March 14, 2025
No.	Revision	Date

TABLE OF CONTENTS

IAE	BLE OF CONTENTS	2
List	of Figures	3
List	of Appendices	3
1.0	INTRODUCTION	4
1.1	Background	4
2.0	STUDY PARAMETERS	6
3.0	WATER SUPPLY	7
3.1	Existing Water Supply	7
3.2	Proposed Water Supply	7
4.0	FOUNDATION DRAINAGE	9
5.0	SANITARY SERVICING	.10
5.1	Existing Sanitary Servicing	.10
5.2	Proposed Sanitary Servicing	.10
5.3	COMPLIANCE WITH MECP PROCEDURE F-5-5	.11
6.0	STORMWATER SERVICING	.12
6.1	Existing Conditions	.12
6.2	Allowable Release Rate	.14
6.3	Proposed Stormwater Servicing	14
6.4	Quantity Control	16
6.5	Water Balance	.18
6.6	Quality Control	.19
7.0	EROSION AND SEDIMENT CONTROL	19
8 0	CONCLUSIONS	20

LIST OF FIGURES

Figure 1 Site Location

Figure 2 Existing Storm Drainage Plan
Figure 3 Proposed Storm Drainage Plan

LIST OF APPENDICES

Appendix A Topographic Survey prepared by Krcmar

Site Plan prepared by RAW Design Inc.

Appendix B Water Demand Calculations

FUS Surcharge Distance Figure

Hydrant Flow Test Results prepared by Lozzi Aqua Check

Appendix C Sanitary Design Calculations

Appendix D Stormwater Design Calculations

Appendix E Hydrogeological Report prepared by GEMS

Hydrological Review Summary prepared by GEMS

Appendix F Servicing Report Groundwater Summary

Project No.: 23073

1.0 INTRODUCTION

1.1 BACKGROUND

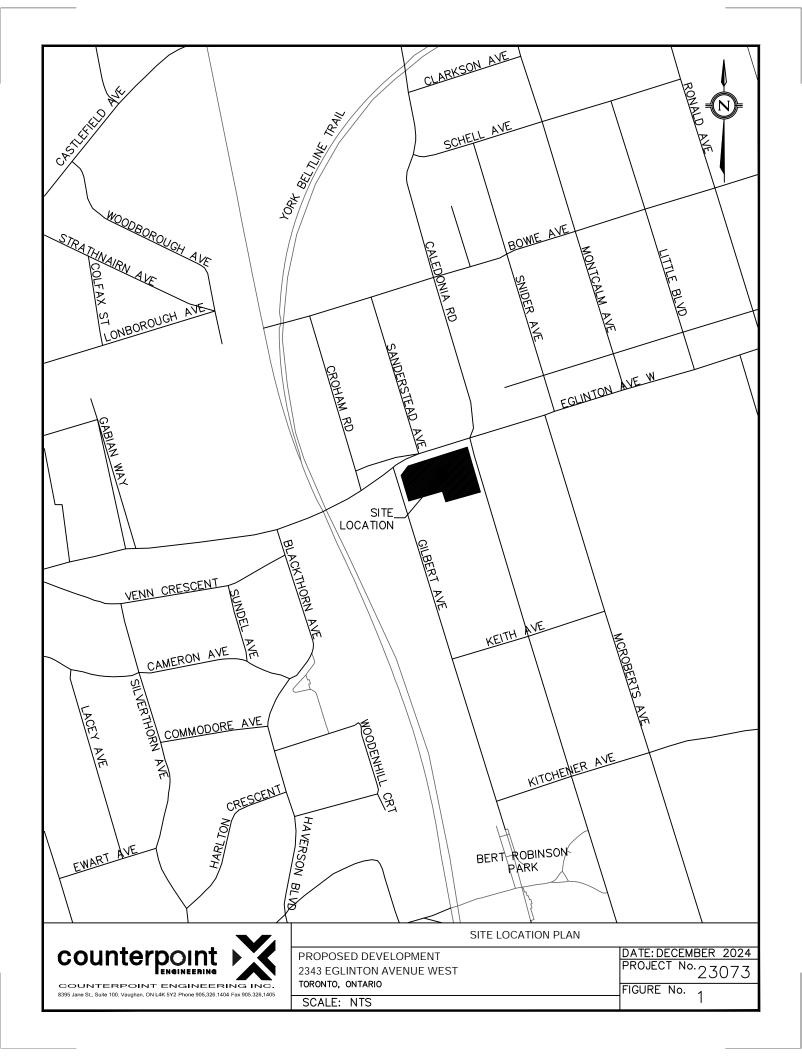
This Functional Servicing and Stormwater Management Report (FSR) has been prepared on behalf of 1764174 Ontario Inc. in support of a Zoning By-Law Amendment application for a net site area of 0.446 ha.

The subject site is located at the south-east corner of Eglinton Avenue West and Gilbert Avenue at the municipal address of 2343 Eglinton Avenue West in the City of Toronto – York District. The site is bound by commercial buildings to the north, residential to the east and south, and a park to the west. **Figure 1 – Site Location** illustrates the subject site within the context of its surroundings. Existing underground servicing infrastructure is available on Eglinton Avenue West, Gilbert Avenue and Caledonia Road. The existing 0.461 ha site currently contains a single-storey Shoppers Drug Mart store. For the existing conditions, a topographical survey of the site has been included in **Appendix A**.

The proposed mixed-use (commercial/residential) development consists of a forty-three (43) storey building with two (2) levels of underground parking. Refer to **Appendix A** for the Site Plan prepared by Raw Design Inc.

This Functional Servicing Report has been prepared to address the site servicing strategy (stormwater, sanitary, and water) in support of a Zoning By-Law Amendment application. The proposed servicing works (including stormwater conveyance) will be designed to meet City of Toronto Design Guidelines.

Project No.: 23073



2.0 STUDY PARAMETERS

This Report is based on the review of the following documents and drawings:

- Architectural Plans prepared by Raw Design Inc.
- Hydrogeological Report prepared by GEMS
- Plan and Profile Drawings, Gilbert Avenue and Caledonia Road (SEW-237-2, GRA-146, Roll-Pav-91-5, Roll-SEW-234A), provided by City of Toronto
- City of Toronto Wet Weather Flow Management Guidelines, prepared by City of Toronto, Revised November 2006
- City of Toronto Sewer and Watermain Design Criteria, prepared by City of Toronto, Second Edition, Revised September 2022
- City of Toronto Sewer Atlas Maps, prepared by City of Toronto, Third Edition January 2010

Project No.: 23073

3.0 WATER SUPPLY

3.1 EXISTING WATER SUPPLY

There is an existing 150 mmø watermain on the south side of Eglinton, an existing 150 mmø watermain on Gilbert Avenue, and an existing 300 mmø watermain on Caledonia Road. The existing Shoppers Drug Mart is serviced by a connection to the existing 300 mmø watermain on Caledonia Road. There is an existing hydrant north of the subject site on Caledonia Road and north-west of the subject site on Eglinton Avenue West.

3.2 PROPOSED WATER SUPPLY

The site will be serviced by one (1) standard "h" connection to the existing 300 mmø watermain on Caledonia Road. As per Building Code 3.2.9.7 (4), since the building is more than 84 m high, measured between grade and the ceiling level of the top storey, the building shall be served by no fewer than two sources of water supply from a public water system. Therefore, an additional fire connection is proposed to connect to the 300 mmø watermain on Caledonia Road with an isolation valve between both proposed connections. Refer to the **Site Servicing Plan** for the proposed watermain service connection location.

The City of Toronto's design criteria states that the water demand used for watermain size selection should be sufficient to satisfy maximum day demand plus fire flow or the peak hour demand, whichever is greater. Fire flow for residential areas will not be less than 4,800 L/min for a 2-hour duration in addition to the maximum daily domestic demand, delivered with a residual pressure of not less than 140 kPa. For commercial, institutional and industrial areas, the minimum fire flow available will not be less than 5,000 L/min for 4 hours, delivered with a residual pressure of not less than 140 kPa. Fire demand was calculated as per the Fire Underwriter's Survey (FUS) guidelines (2020).

Refer to **Appendix B** for the supporting calculations of the following proposed flows:

- Maximum Hour Demand = 385.2 L/min
- Maximum Day Demand = 200.9 L/min
- Fire Flow Demand (2.0 hours) = 5,000 L/min
- Maximum Day Demand plus Fire Flow Demand = 5,201 L/min (governs)

Project No.: 23073

City of Toronto design criteria dictates the following system pressure requirements:

- Average Day and Maximum Day range = 350 kPa to 550 kPa
- Minimum hour and peak hour range = 275 kPa to 700 kPa
- Minimum pressure under any non-fire demand scenario = not less than 275 kPa
- Minimum residual pressure during maximum day plus fire scenarios = not less than 140kPa
- Maximum static pressure = 690kPa

A hydrant flow test was conducted on the existing 300 mmø watermain on Caledonia Road, at the property frontage of the subject site. The system has a static pressure of 88 psi and a residual pressure of 74 psi at a flow of 1,894 US GPM. Based on these results and utilizing the accepted calculation method of the National Fire Protection Agency (NFPA), the available flow from this main at the minimum residual pressure allowed by City of Toronto criteria of 140 kPa would be approximately 17,808 L/min. Refer to **Appendix B** for the supporting calculations.

Based on the flow test results, the pressure and flow within the existing watermain system on Caledonia Road meets the requirement to accommodate both water service connections for the proposed development without requiring external watermain upgrades. The flow test results for the existing watermain are included in **Appendix B**.

Project No.: 23073

4.0 FOUNDATION DRAINAGE

Discharge of foundation drains to municipal sewers must be in accordance with Toronto Municipal Code, Chapter 681 Sewers. The quality limits for discharge in the sewers must satisfy the limits as listed in Table 1 – Limits for Sanitary and Combined Sewer Discharge and/or Table 2 – Limits for Storm Sewer Discharge of Chapter 681. A Permit To Take Water (PTTW) from the Ministry of Environment, Conservation and Parks (MECP) through an online process is required for Short Term water taking between 50 m³/day and 400 m³/day. A PTTW is required for Long Term water taking from a permanent drainage system greater than 50 m³/day. A permit is required from the City of Toronto for both short-term and long-term discharges to the municipal sewer system.

A Hydrogeological Report was prepared by GEMS, dated February 4, 2025, for the proposed development. Refer to **Appendix E** for the main body of the report.

Short-Term (Construction) — Groundwater rates (including the 100-year rainfall event) are expected to be no more than 278.50 m³/ day (3.22 L/s). A limited PTTW from the MECP will be required for construction dewatering. The discharge will be to the 750 mmø combined sewer located on Caledonia Road. The water quality exceeded the Toronto Table 1 Sanitary/Combined Sewer Discharge Limits. Groundwater quality is expected to change over time during active construction dewatering. The dewatering contractor should assess the groundwater quality before any water-taking and discharging activities. Details of Construction (short-term) dewatering that satisfies Toronto Municipal Code, Chapter 681 Sewers will be provided by a dewatering contractor prior to construction in order to obtain a short-term discharge permit from the City.

Based on the above estimate, a permit to take water would not be required for water taking during the dewatering and construction of the proposed development, as the forecasted groundwater rate is less than 400,000 L/day. However, an Environmental Activity and Sector Registry (EASR) would be required for water taking during the dewatering and construction of the proposed project, as the forecasted groundwater dewatering rate is greater than 50,000 L/day.

Project No.: 23073

<u>Long-Term Discharge</u> - As of January 1, 2022, the City of Toronto Foundation Drainage Policy prohibits post-construction discharge of groundwater into the municipal sanitary/combined sewer system. As such, the proposed structure is to be watertight and there will be no long-term groundwater discharge to the municipal sewer.

5.0 SANITARY SERVICING

5.1 EXISTING SANITARY SERVICING

The existing Shoppers Drug Mart store is likely serviced by the existing 750 mmø combined sewer on Caledonia Road. There are also an existing 300 mmø combined sewer along Eglinton Avenue West which ultimately discharges flows to the 750 mmø combined sewer on Caledonia Road and 300 mmø combined sewer which flows south along to Gilbert Avenue.

Any existing connections will be abandoned upon redevelopment. Based on existing conditions, it is estimated that the existing peak sanitary flow is approximately **0.25 L/s**.

5.2 PROPOSED SANITARY SERVICING

The site will be serviced by a new connection to the 750 mmø combined sewer within Caledonia Road. Refer to the **Public Utilities and Site Servicing Plan** for the proposed location of the sanitary service connection. Using the City of Toronto Sanitary Design criteria, the equivalent population for the proposed mixed-use development is approximately **1173 persons**. The peak sanitary flow for the proposed development has been calculated to be **12.44 L/s** which is an increase of **12.19 L/s** (0.25 L/s existing peak sanitary flow vs 12.44 L/s proposed peak sanitary flow) for the peak flow to the combined sewer system. Refer to **Appendix C** for detailed calculations.

As discussed later in **Section 6.0 - Stormwater Servicing**, it is proposed to redirect the stormwater flows from the 750 mmø combined sewer on Caledonia Road and 300 mmø combined sewer on Eglinton Avenue to the combined sewer on Gilbert Avenue. Therefore, the increase in sanitary flows under post development conditions will be offset by the decrease in storm flows as a result of the proposed removal of storm flows from the 750 mmø combined sewer on Caledonia Road. **Table 1** below summarizes predevelopment and post development flows from the site to the 750 mmø combined sewer on Caledonia Road.

Project No.: 23073

Table 1 – Site Predevelopment and Post Development Flows to Combined Infrastructure

	F	Predevelopme	ent	Post development			
Storm Event	Storm Runoff (L/s)	Sanitary Flows (L/s)			Sanitary Flows (L/s)	Total Flows to Sewer (L/s)	
2-Year	86	0.25	86.25	0	12.44	12.44	
100-Year	243	0.25	243.25	0	12.44	12.44	

As shown in **Table 1**, there will be no increase in flows to the 750 mmø combined sewer on Caledonia Road. In the 2-Year Storm event, there will be a decrease of **73.77 L/s** to the combined sewer infrastructure downstream of the site.

5.3 COMPLIANCE WITH MECP PROCEDURE F-5-5

As discussed later in **Section 6.0 - Stormwater Servicing**, the existing stormwater flow under 2-year storm event is calculated to **13 L/s** on the combined sewer in Gilbert Avenue, and post-development release rate to Gilbert Avenue by underground storage tank is **34.0 L/s**, thus the redevelopment will cause a net stormwater flow increase of **21.0 L/s** (34.0-13=21.0 L/s) on the combined sewer in Gilbert Avenue.

The City of Toronto has began major construction on the Fairbank-Silverthorn Storm Trunk Sewer System Phase 2 – Local Collector Storm Sewers as part of the Areas 3 Basement Flooding Study. This improvement, identified as contracts 23ECS-MI-02FS and 23ECS-MI-03FS in the Areas 3 Basement Flooding consists of "Construction of a large-diameter storm sewer tunnel, Construction of approximately 17 km of new local storm sewers on various streets to separate combined sewers and to collect stormwater and send it to the tunnel, and Installation of approximately 330 inlet control devices to restrict stormwater from entering existing combined sewers."

It is anticipated to see reduction of the flow to the combined system by the disconnection of catchbasins from combined sewers located upstream of the site and the reconnection of the catchbasins to a newly constructed storm sewers. The flow reduction will offset the net increase of **21.0 L/s** flow on Gilbert Avenue from the new development. Therefore, it can be concluded that there will be no increase in Combined Sewer Overflow (CSO) and as such the development is in compliance with MECP Procedure F-5-5 and a new storm sewer connection to the combined sewer should be permitted.

Project No.: 23073

6.0 STORMWATER SERVICING

6.1 EXISTING CONDITIONS

There is an existing 300 mmø combined sewer on Gilbert Avenue that conveys storm flows south along Gilbert Avenue. There is an existing 300 mmø combined sewer on south side of Eglinton Avenue West that conveys storm flows east to the existing 750 mmø combined sewer on Caledonia Road. The 750 mmø combined sewer on Caledonia Road conveys storm flows south and ultimately to Lake Ontario.

Refer to **Figure 2 – Existing Storm Drainage** for details on the existing drainage patterns for the site in existing conditions. The existing drainage is summarized below:

- Area 100 0.402 ha, C=0.87 (to Caledonia Road 750 mmø Combined Sewer)
- Area 101 0.059 ha, C=0.90 (to Gilbert Avenue 300 mmø Combined Sewer)

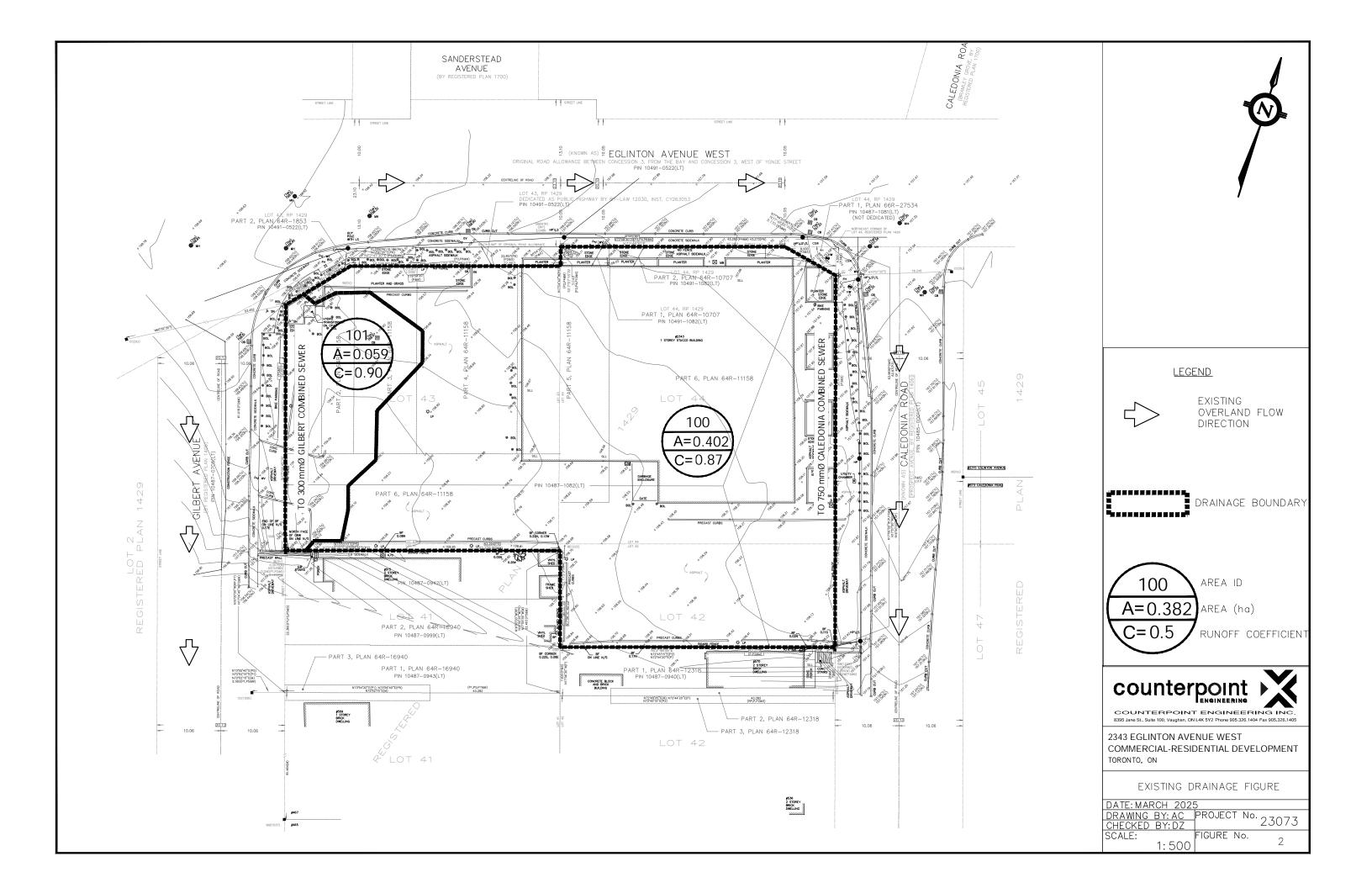

Under existing conditions, the uncontrolled flows to the storm sewers on Gilbert Avenue and Caledonia Road are summarized in the table below:

Table 2 - Predevelopment Storm Flows

Storm Event	Total Uncontrolled Storm Runoff to 750mm Combined Sewer on Caledonia Rd. (L/s)	Total Uncontrolled Storm Runoff to 300mm Combined Sewer on Gilbert Ave. (L/s)
2-Year	86	13
5-Year	128	19
10-Year	158	24
25-Year	184	28
50-Year	218	33
100-Year	243	37

Refer to **Appendix D** for calculations.

Project No.: 23073

6.2 ALLOWABLE RELEASE RATE

The sites imperviousness under existing conditions is higher than 50%. Based on the City's Wet Weather Flow Management Guidelines, the maximum value of C (Runoff Coefficient) used in calculating the pre-development peak runoff rate is limited to 0.50 for the 2-year storm event. As the existing properties are greater than 50% impervious, this rule applies.

The allowable minor system discharge from the subject site is calculated without the area dedicated to the City as follows:

 $Q_A = C \times A \times i \times N (L/s)$

Table 3 - Allowable Release Rate

A - Site Area (ha)	0.4612
Tc (min)	10
C - Runoff Coefficient	0.50
i - Intensity	88.19
N – Constant	2.778
Q - Release Rate (L/s)	56.5

The allowable release rate for the subject site is **56.5** L/s. Refer to **Appendix D** for the allowable release rate calculations.

6.3 PROPOSED STORMWATER SERVICING

In the post-development condition, the proposed mixed-use (commercial/residential) development will be a forty-three (43) storey building with two (2) levels of underground parking. Refer to the land use breakdown for the uncontrolled area and the remainder of the site in the table below.

Table 4: Proposed Land Use Breakdown

Land Use	Area (ha)	,C,
SITE		
Green Roof	0.0106	0.0047
Non-Green Roof	0.2952	0.2657
Impervious Area	0.0923	0.0826
Pervious Area	0.0465	0.0114
Total Area	0.4446	
UNC		
Impervious Area	0.0090	0.0081
Pervious Area	0.0075	0.0019
Total Area	0.0165	

This report has been prepared in accordance with the criteria set by the City of Toronto Weather Flow Management Guidelines (WWFMG). Since there is no existing storm sewer within Gilbert Avenue, Eglinton Avenue and Caledonia Road around the site at this time, the site will be serviced by the 300 mmø combined sewer located on Gilbert Avenue. Refer to the **Site Servicing Plan** for the proposed location of the storm connection.

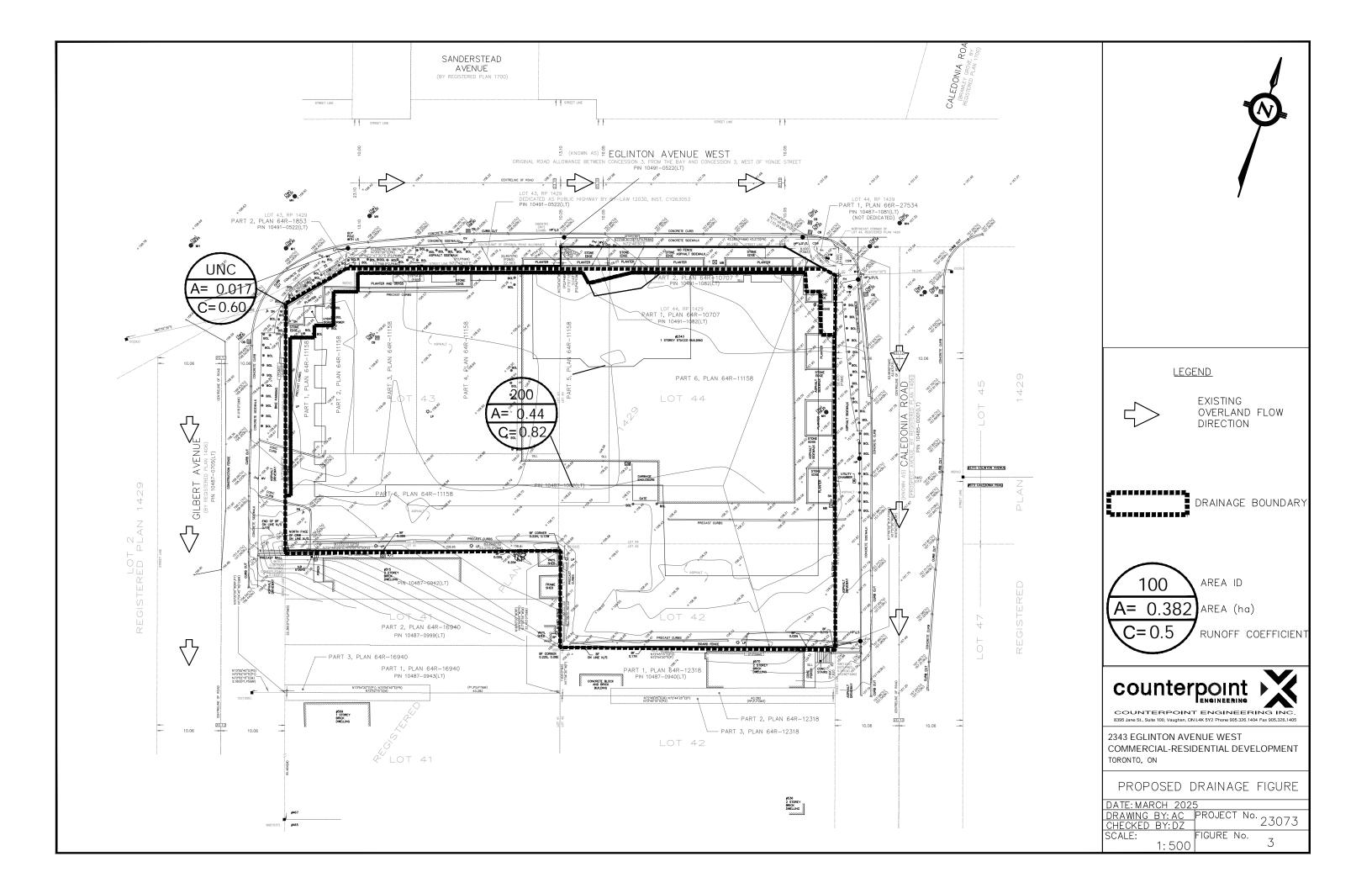
There may be runoff from rainstorms that exceed the capacity of the City's sewer connection. Therefore, should the storm outlet for the site become plugged, the at-grade access lid to the underground storage tank at the property line will lift and water will discharge overland to Gilbert Avenue.

The owner shall be responsible to provide flood protection or a safe overland flow route for the proposed development without causing damage to the proposed and adjacent public and private properties. Existing drainage patterns on adjacent properties shall not be altered and stormwater runoff from the subject development shall not be directed to drain onto adjacent properties.

6.4 QUANTITY CONTROL

The allowable site release rate for the proposed development was determined by calculating the 2-year peak flow with a maximum value of 50% impervious as per the City of Toronto Wet Weather Flow Management Guidelines. Using the pre-development subject site area, the allowable release rate of the site was determined to be **56.5** L/s. Uncontrolled Area UNC (0.015 ha) will produce a peak runoff of **6.9** L/s during the 100-year storm event.

Quantity control will be provided on-site by an underground storage tank within the P1 level of the building in combination with an outlet control device to ensure that the 100-year post redevelopment peak flows from the site are attenuated to **49.6 L/s**. A storage volume of approximately **134 m**³ in the tank will be required to control the 100-year post development flows to the allowable release rate. Note that an additional **15.9 m**³ volume will be required for the water reuse cistern portion of the tank. Refer to **Appendix D** for detailed calculations.


Table 4 – Peak Flow and Storage Summary - 100-Year Storm Event

Area ID	Area (ha)	Runoff Coefficient	Storage Available (m³)	Storage Required (m³)	Release Rate (L/s)	Orifice Size (mm)	Description
UNC	0.0165	0.60	N/A	N/A	6.9	Uncontrolled	
SITE	0.4446	0.82	188	154	34.0	Orifice	At SPA
TOTAL	0.4611				40.9		

^{1.} Refer to Appendix D for modified rational calculations.

As shown in **Table 4** above, the proposed site release rate of **40.9 L/s** during the 100-year storm event is lower than the allowable site release rate of **56.5 L/s**. Refer to **Appendix D** for storage volume calculations. It is expected that the proposed development will not result in any adverse impacts to the existing storm sewer system on Weston Road. Refer to **Figure 3 – Proposed Storm Drainage** for the locations of the proposed post-development surface areas. In situations where the outlet control device is not sufficient, the at grade access lid to the underground storage tank at the property line will lift and water will discharge overland to Weston Road. The design of all internal piping within the building must provide adequate capacity for full capture and conveyance of all flows generated by storms up to and including the 100-year rainfall event. All design and associated calculations for the internal storm system, including the design of the internal inlet structures, piping and mechanical appurtenances is to be completed by the Mechanical Engineer.

Project No.: 23073

6.5 WATER BALANCE

The Wet Weather Flow Guidelines indicate that the minimum on-site runoff retention requires the proponent to retain all runoff from a small design rainfall event – typically 5 mm (In Toronto, storms with 24-hour volumes of 5 mm or less contribute about 50% of the total average annual rainfall volume). This runoff must be retained through infiltration, evapotranspiration or rainwater reuse. As the building footprint occupies the majority of the site, the opportunity for infiltration is not feasible.

To achieve the water balance objectives, the site was categorized by surface types: green roof area, non-green roof area, impervious paved area, and pervious landscaped area. The initial abstraction values for the impervious surfaces and pervious surfaces were 1 mm and 5 mm, respectively. The initial abstraction was determined based on percent of surface area and initial abstraction values of each surface type. Without any specific on-site retention measures, the proposed development would achieve the following levels of water balance as seen in **Table 5**.

Table 1: Achieved Water Balance

Site Description	Fraction of Site Area		Initial Abstraction (mm)	Overall Initial Abstraction (mm)
Green Roof	2.3%	0.0106 ha	5.0	0.11
Non-Green Roof Area	64.0%	0.2952 ha	1.0	0.64
Impervious Paved Area	22.0%	0.1013 ha	1.0	0.22
Pervious Landscaped Area	11.7%	0.0540 ha	5.0	0.59
Total	100.0%	0.4611 ha		1.56

Based on **Table 5**, the site will have a shortfall of 3.44 mm (5 mm - 1.56 mm) of initial abstraction. This is equivalent to approximately **15.9** m^3 of storage. The proposed water balance volume will be utilized for on-site irrigation. Details regarding the utilization of the water balance volume will be provided during the Site Plan Control stage.

6.6 QUALITY CONTROL

The installation of a media filtration device (Stormfilter unit) is proposed to achieve the City's requirement of 80% TSS removal. Runoff from non-vehicular areas such as rooftop surfaces is considered to be free of oil and grit and does not require water quality treatment. The unit will be sized to accommodate the storm runoff from the at grade areas being conveyed to the tank and to remove an overall TSS of 80%. The proposed development would achieve the following levels of TSS removal efficiency as seen in **Table 6**.

Table 2: Achieved Water Quality Control

Type of Area	Total TSS Removal (%)	Area	Units	Percent Redevelopment Area (%)	Overall % TSS Removal Efficiency
Green Roof	80%	0.0106	ha	2.3%	1.8%
Non-Green Roof Area	80%	0.2952	ha	64.0%	51.2%
Impervious / Paved Area	80%	0.1031	ha	20.0%	16.0%
Pervious / Landscaped Area	96%	0.0357	ha	10.1%	9.7%
Uncontrolled Impervious / Paved Area	0%	0.0090	ha	2.0%	0.0%
Uncontrolled Pervious / Landscaped Area	80%	0.0075	ha	1.6%	1.3%
Total Area		0.4611	ha	100.0%	80.1%

7.0 EROSION AND SEDIMENT CONTROL

During construction, erosion and sediment control will be implemented on site. This will be achieved through methods such as installation of a silt fence around the perimeter of the site, placement of mud mats at site access points to municipal roadways and the use of sediment control barriers at catchbasins located in proximity to the site.

The erosion and sediment control measures proposed during construction will be designed, constructed, and maintained on-site in accordance with the TRCA's Erosion and Sediment Control Guidelines for Urban Construction (2019) and/or City of Toronto requirements.

8.0 CONCLUSIONS

This Functional Servicing and Stormwater Management Report presents a site servicing strategy for the proposed development that addresses the requirements of the applicable design guidelines and provides the basis for detailed servicing design.

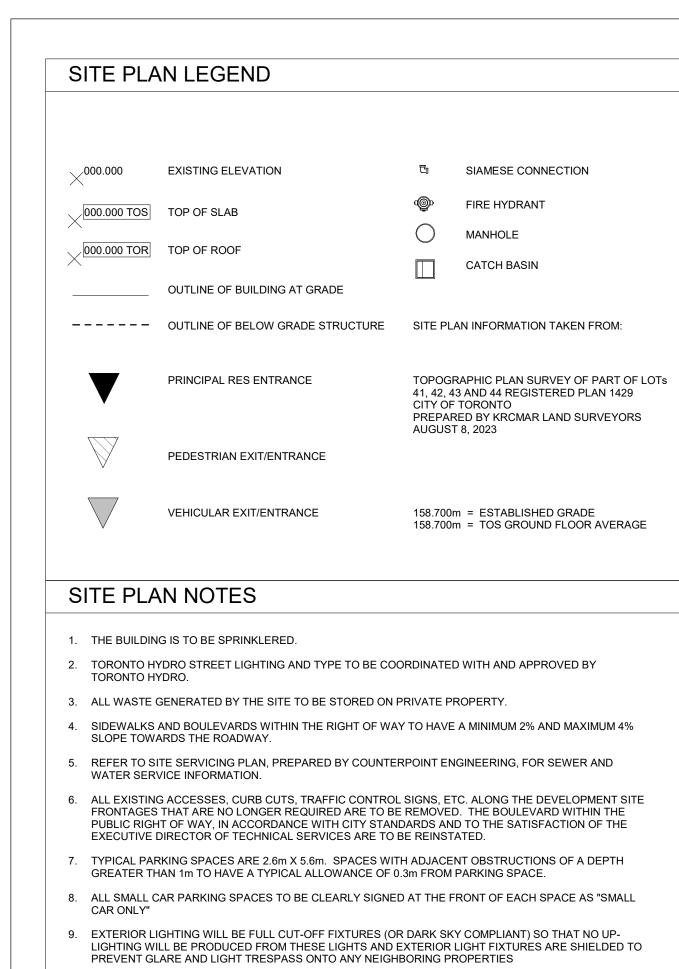
We trust this report sufficiently addresses the site servicing and stormwater management requirements and allows for approval of the proposed Zoning By-law Amendment application of the subject site for the proposed use described herein. Should there be any questions or comments, please feel free to contact the undersigned.

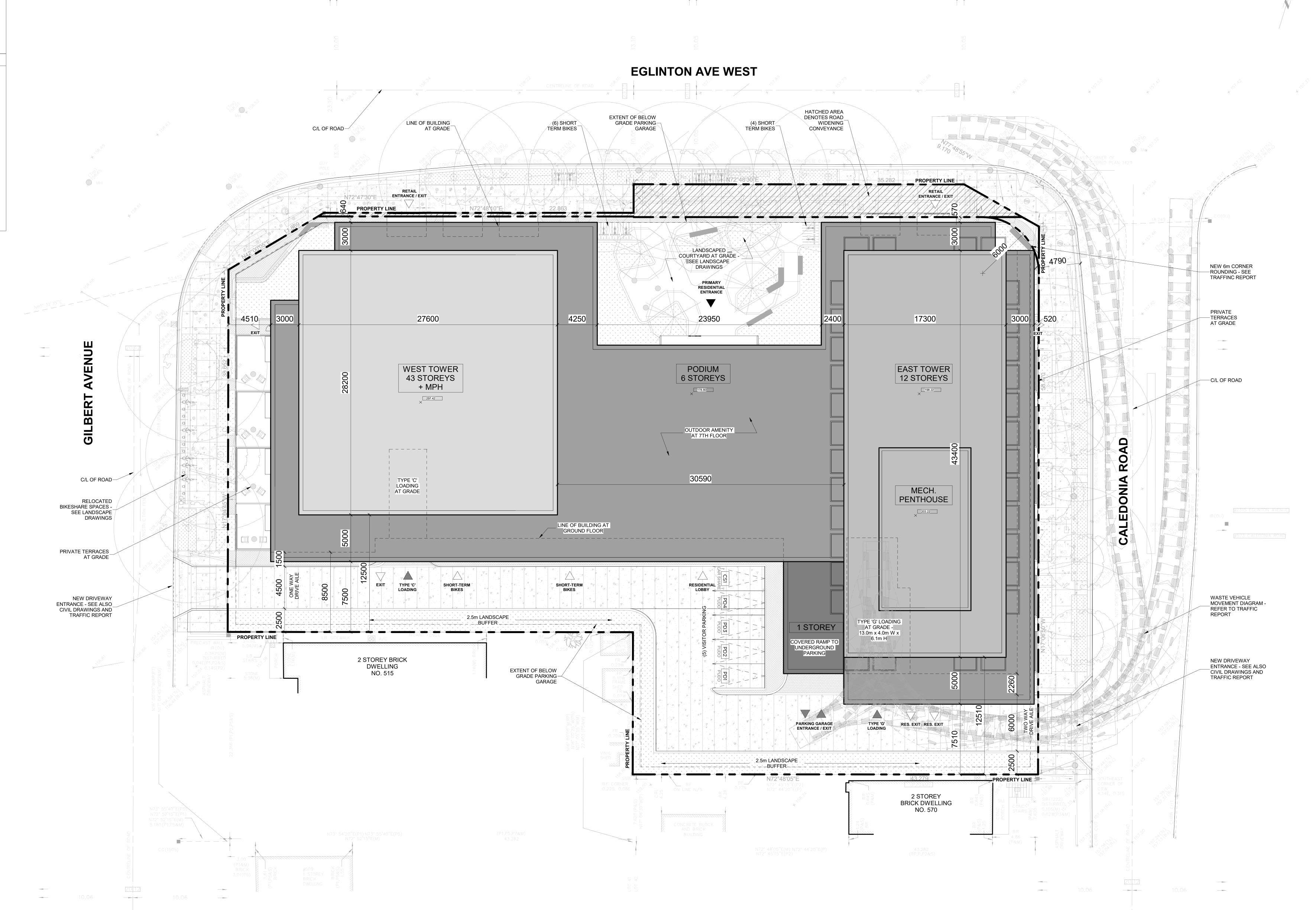
Sincerely,

Counterpoint Engineering Inc.

Abu Junayet, P.Eng.
Civil Engineer
Counterpoint Engineering Inc.
647-764-0725
ajunayet@counterpointeng.com

Project No.: 23073


This Report was prepared by Counterpoint Engineering Inc. for the exclusive use of the 'Client' and in accordance with the Terms and Conditions set out in the Agreement between Counterpoint Engineering Inc. and said Client. The material contained in this Report and all information relating to this activity reflect Counterpoint Engineering's assessment based on the information made available at the time of preparation of this report and do not take into account any subsequent changes that may have occurred thereafter. It should be noted that the information included in this report and data provided to Counterpoint Engineering has not been independently verified. Counterpoint Engineering Inc. represents that it has performed services hereunder with a degree of care, skill, and diligence normally provided by similarly-situated professionals in the performance of such services in respect of projects of similar nature at the time and place those services were rendered. Counterpoint Engineering Inc. disclaims all warranties, or any other representations, or conditions, either expressed or implied. With the exception of any designated 'Approving Authorities' to whom this report was submitted to for approval by Counterpoint Engineering Inc., any reliance on this document by a third party is strictly prohibited without written permission from Counterpoint Engineering Inc. Counterpoint Engineering Inc. accepts no responsibility for damages, if any, suffered by a third party as a result of decisions made or actions based on this Report.


Appendix A

Project No.: 23073

March 2025

10. SHORT-TERM BIKE PARKING: MIN. LENGTH 1.8m, MIN. WIDTH 0.6m, MIN. VERTICAL CLEARANCE 1.9m

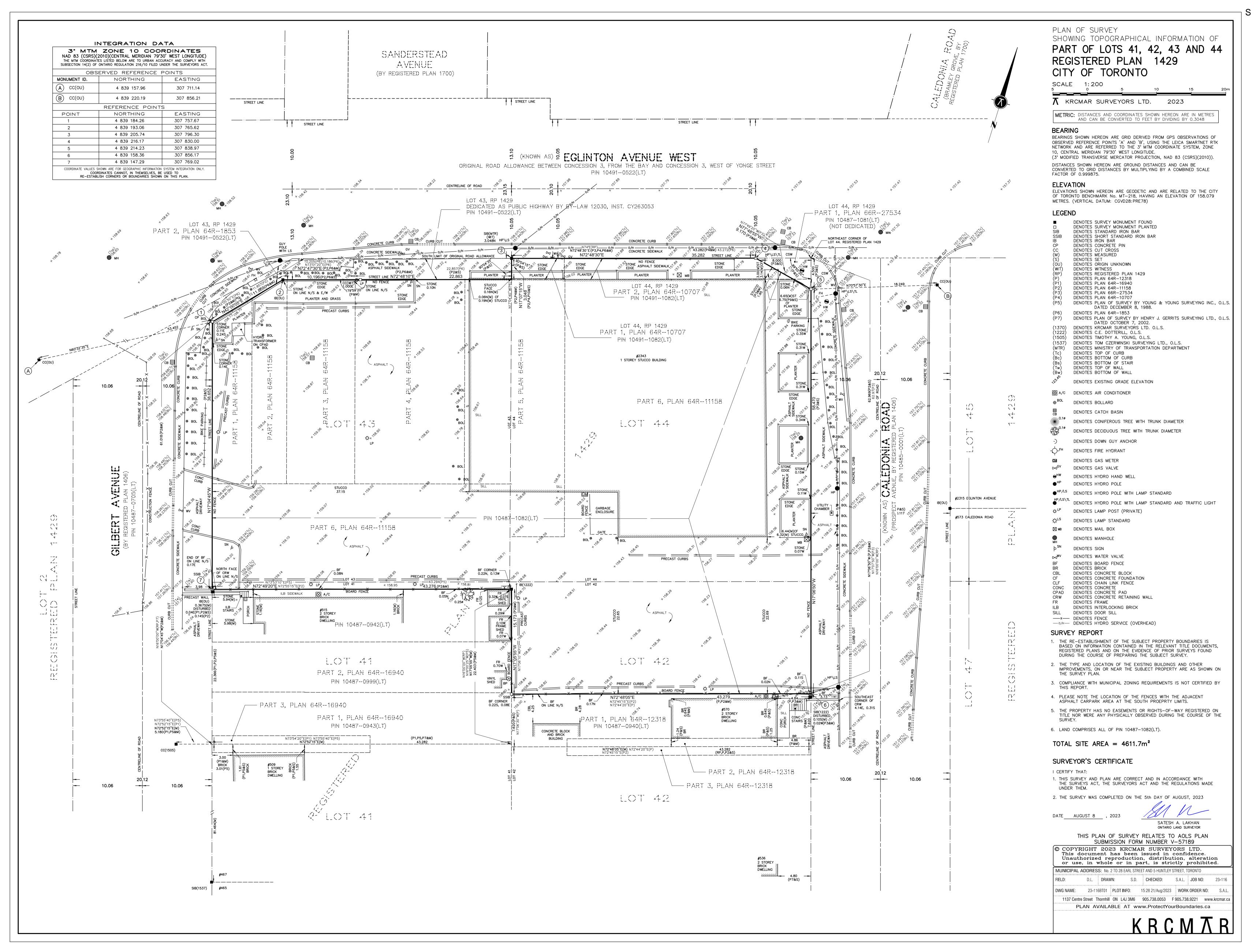
THIS DRAWING IS THE PROPERTY OF THE ARCHITECT AND MAN NOT BE SERVICIDED ON USER WITHOUT THE PROPERTY OF THE ARCHITECT AND USER SERVICIDED ON USER WITHOUT ALL LOVES AND GREENOWS AND SHALL REPORT ALL LOVES AND GREENOWS AND SHALL REPORT ALL LOVES AND GREENOWS AND SHALL REPORT ALL LOVES ON USER AND GREEN OWN OF A REPORT TO COMMENCE ON USER A REQUISION DESCRIPTION OF THE METHOD RESIDENCE AND SHALL REPORT AND ARCHITECTURE OF THE METHOD RESIDENCE AND THE METHOD REPORT OF TH

1 SITE PLAN

A10

405-317 ADELAIDE STREET WEST TORONTO CANADA M5V 1P9 +1 416 599 9729

2343 Eglinton Ave. W,


PROPOSED MIXED USE DEVELOPMENT

WWW.RAWDESIGN.CA

Toronto, ON

Client Name

SITE PLAN

Appendix B

Project No.: 23073

March 2025

Counterpoint Engineering Inc.

Water Demand Design Calculations

Project: 2343 Eglinton Avenue West

Project No: 23073

Location: Toronto, Ontario Site Area: 0.446 ha

Population

1BR/1BR+Den	1.4	ppu
2BR/2BR+Den/	2.1	ppu
3BR/3BR+Den	3.1	ppu
Commercial / Retail	1.1	persons/100m ²
Offices	3.3	persons/100m ²

		Residential Units						
	1B / 1B+D	1B / 1B+D						
Proposed Building	348	225	65	638	878			
TOTAL UNITS / AREA (m ²)	348	878						

	Population 1BR / 1B + D	Population 2BR / 2BR + D	Population 3BR / 3BR + D	TOTAL POPULATION
Residential	488	473	202	1163
Commercial/Retail	-	-	-	10
Total Equivalent Population	1173			

City of Toronto Watermain Guidelines

Per Capita Demand

Single Family	310	(L/capita/day)
Multi-Unit	190	(L/capita/day)

Peaking Factors

Land Use	Minimum Hour	Maximum Hour	Maximum Day	1
Residential	0.80	2.25	1.50	1
Commercial	0.84	1.20	1.10]*V
Industrial	0.84	1.90	1.10	1
Institutional	0.84	1.90	1.10]*V
Apartment	0.84	2.50	1.30]*V

*Values used for Commercial Land Use

Values used for Office Land Use
Values used for Residential (Multi-Unit) Land Use

Water Demand based on Equivalent Population

Land Use	Population	Minimum Hour (L/min)	Maximum Hour (L/min)	Maximum Day (L/min)	Fire Flow Required (L/min)	Fire Flow Duration (hr)*	Max Day + Fire Flow (L/min)
Residential	1163	128.9	383.6	199.5			
Commercial/Retail	10	1.1	1.6	1.5	-	-	-
Totals	1173	130.0	385.2	200.9	5,000	2.00	5,201

Counterpoint Engineering Inc.

REQUIRED FIRE FLOW WORKSHEET

Fire Underwriters Survey

Project: 2343 Eglinton Avenue West

Project No: 23073

Guide for Determination of Required Flow Copyright I.S.O, 2020 Where:

 $RFF = 220C\sqrt{A}$

RFF

= the Required Fire Flow in litres per minutes (LPM) = the Construction Coefficient is related to the type of construction of the building = the Total Effective Floor Area (effective building area) in square metres of the building

Note that the construction typology used by the insurance industry and public fire protection differs from the terms of reference in the National Building Code of Canada (NBC).

The following Construction Types and Coefficients are used in the required fire flow formula:

Тур	e of Construction	Class Factor
V & VI-D	Wood Frame	1.5
IV-C & III Ordinary Construction		1.0
IV-A & II Non-Combustible		0.8
I	Fire-Resistive	0.6

=	1.5 for Type V Wood Frame Construction
=	0.8 for Type IV-A Mass Timber Construction
==	0.9 for Type IV-B Mass Timber Construction
=	1.0 for Type IV-C Mass Timber Construction
=	1.5 for Type IV-D Mass Timber Construction
=	1.0 for Type III Ordinary Construction
=	0.8 for Type II Noncombustible Construction
=	0.6 for Type I Fire Resistive Construction

	Contents	% Reduction
NC	Non-Combustible	25
LC	Limited Combustible	15
С	Combustible	0
FB	Free Burning	15
RB	Rapid Burning	25

Noncombustible Construction (Type II)

A building is considered to be of Noncombustible construction (Type II) when all structural elements, walls, arches, floors, and roofs are constructed with a minimum 1-hour fire resistance rating and are constructed with noncombustible materials.

Fire Flow 1)

Type of Construction: C= 0.6 NOTE: 2nd FL=2,627.0m², 3rd FL= 2,627.0m², 4th FL=2,627.0m² m² A= 3941 8,000 L/min (round to nearest 1,000 L/min)

*Note: Assuming building is fire-resistance and all vertical openings and exterior vertical communications are protected in accordance with the National Building Code. Area is the total of the largest floor (Level 3) plus 25% of the next 2 immediately adjoining floors.

2) **Occupancy Reduction**

Contents Factor: Reduction of -15% -1,200 L/min -1200 6,800 L/min 8000L/min + L/min =

3) **System Type Reduction**

NFPA 13 Sprinkler: 30% YES Standard Water Supply: YES 10% Fully Supervised: 10% YES Total 50% Reduction of 50% L/min 3,400 L/min 3,400 L/min = 6800L/min -3,400 L/min

4) **Separation Charge**

Building Face Dist(m) Charge North 0% East 26 10% South 10 20% West 39 0% Total 30% of

6,800 L/min	=	2,040 L/min
(max exp	osur	e charge can be 75%)

Separation Distance	Maximum Exposure Adjustment Charg	
0 m to 3 m	25%	
3.1 m to 10 m	20%	
10.1 m to 20 m	15%	
20.1 m to 30 m	10%	
Greater than 30	0%	

F=	3400L/min +	2040L/min	=	5,440 L/min	(2,000L/min <f<45,000l min)<="" th=""></f<45,000l>
F=		5,000	L/min	(round to the nearest 1,	000L/min)
F=		83	L/s		
F=		1,321	gpm		

counterpoint engineering

NFPA Theoretical Flow Calculations

Project Name: 2343 Eglinton Avenue West

Project Number: 23073

Based on National Fire Protection Association Guidelines, the available flow at the minimum residual pressure of 20psi can be calculated based on the observed flow at the observed pressure readings, as follows:

$$Q_{\rm F} = 29.83 \text{ x c x d}^2 \text{ x p}^{0.5}$$
, where

 Q_F = observed flow (US GPM)

c = hydrant nozzle coefficient (0.90 - 0.95)

d = nozzle diameter (in)

p = observed pitot pressure

$$Q_R = Q_F x h_F^{0.54} / h_R^{0.54}$$
, where

Q_R = available flow

 Q_F = observed flow (US GPM)

h_F = drop from measured static to desired baseline pressure

h_R = drop from measured static to measured residual pressure

Based on flow test results obtained by Lozzi Aqua Check on October 12, 2023

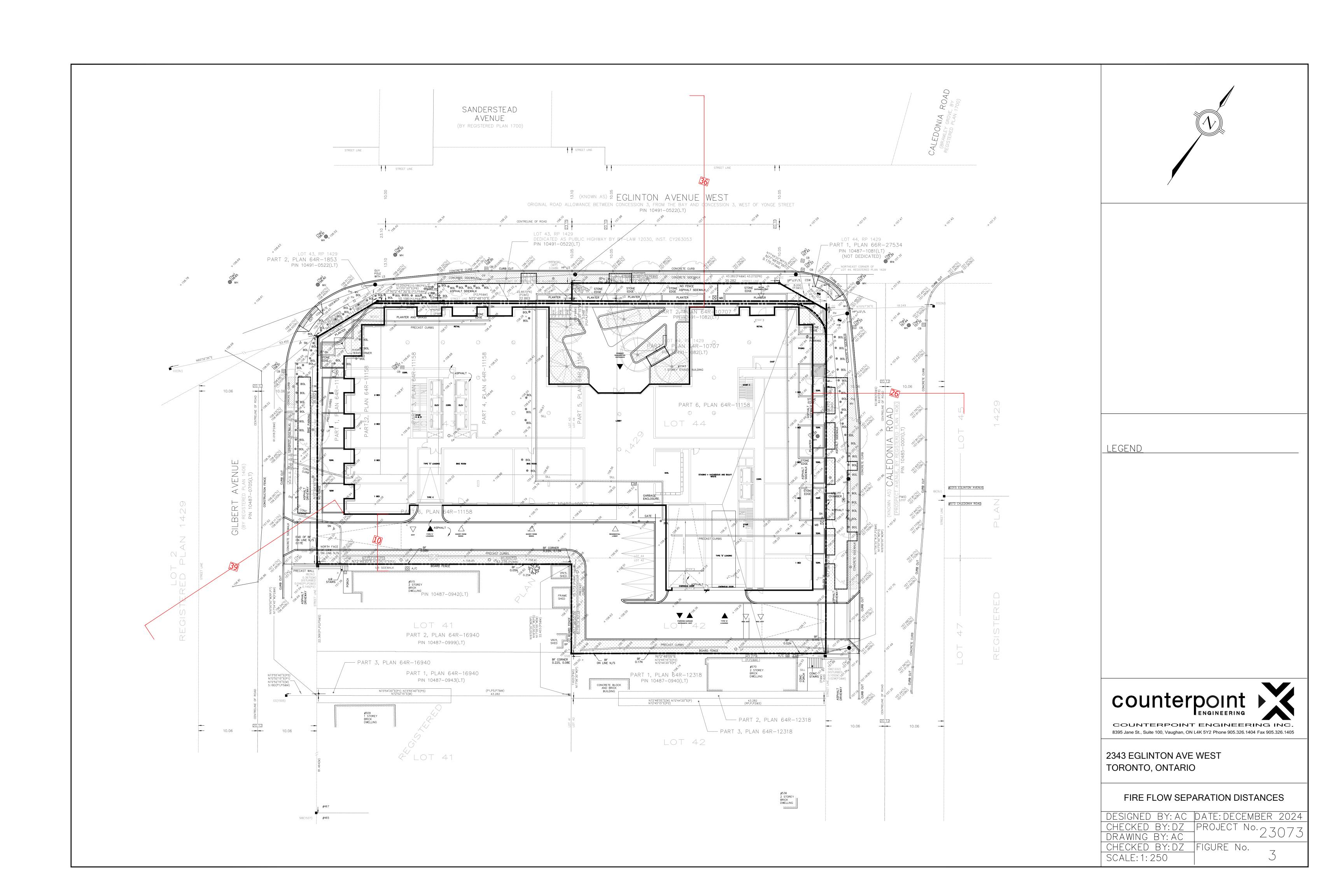
$$c = 0.95$$

$$d = 2.5 \text{ in}$$

$$number of ports = 2$$

$$p = 32$$

$$Q_F = 2004 \text{ US GPM}$$


Measured Static Pressure = 88 psi

Measured Residual Pressure = 74 psi

Desired Residual Pressure = 20 psi

20 psi , minimum per City of Toronto design criteria

Q_R = 4704 US GPM per fire conneciton 17,808 L/min

Lozzi Aqua Check Massimo Lozzi

12307 Woodbine Ave, P.O. Box 519

Gormley, ON LOH 1G0

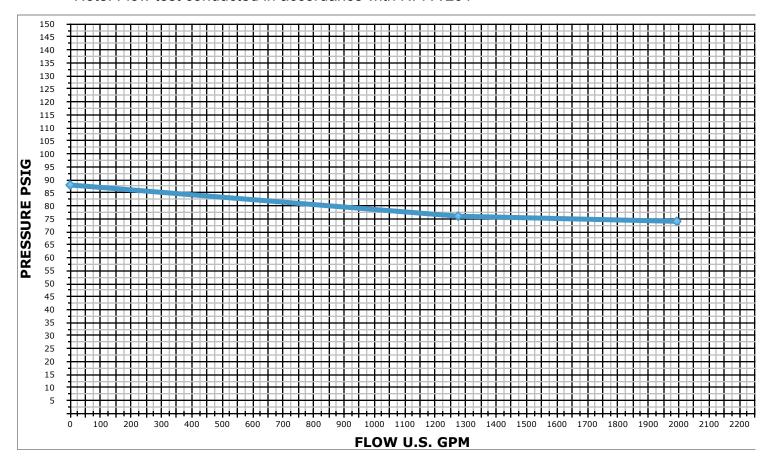
Cell: 416 990-2131

E-mail: lozziaquacheck@gmail.com

Hydrant Flow Test Form

Job Location: 2343 Eglinton Ave W ,Toronto Date: October 12,2023

Time of Test: 9:00 am


Location of Flow Hydrant: first hydrant south of Eglinton Ave on Caledonia Rd.

Residual: second hydrant south Eglinton Ave on Caledonia Rd.

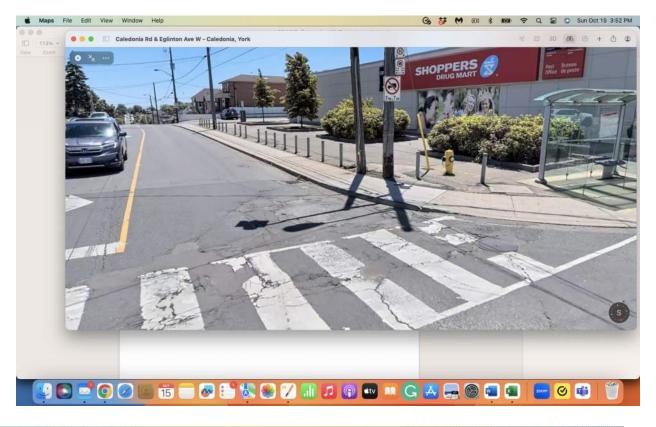
Main Size: 300 mm Static Pressure:88 psi

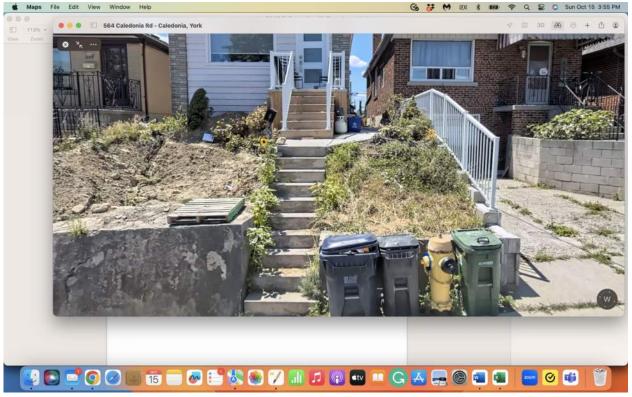
	Number of Outlets & Orifice Size	Pitot Pressure (psi)	Flow (U.S. G.P.M.)	Residual Pressure (psi)
1.	Static	0	0	88
2.	1 x 2 ½	58	1275	76
3.	2 x 2 ½	32	1894	74

Note: Flow test conducted in accordance with NFPA 291

Lozzi Aqua Check

Massimo Lozzi


Cell: 416 990-2131


12307 Woodbine Ave, P.O. Box 519

Gormley, ON LOH 1G0

Site Map:

Appendix C

Project No.: 23073

March 2025

Counterpoint Engineering Inc.

Project: 2343 Eglinton Avenue West

Project No: 23073

Location: Toronto, Ontario
Site Area: 0.461 ha

Existing Equivalent Population Calculations

As per Design Criteria for Sewers and Watermains - Second Edition January 2021 City of Toronto Design flow = average daily dry weather flow x peaking factor + infiltration

Persons Per Unit and per Land Use

Single Family Dwelling	3.5	ppu
1BR/1BR+Den	1.4	ppu
2BR/2BR+Den/	2.1	ppu
3BR/3BR+Den	3.1	ppu
Commercial / Retail	1.1	persons/100m ²
Offices	3.3	persons/100m ²

	Resider	ntial Units	Retail	Office
	# of Houses Total Units		Area (m²)	Floor Area (ha)*
1-storey retail building	-		878	
TOTAL UNITS / AREA (m ²)	0	0	878	0

	TOTAL POPULATION
Residential	0
Retail	10
Office	0
Total Equivalent Population	10

Peak flow Design Parameters

Residential Average flow	240	litres/person/day
Commercial Average flow	250	litres/person/day
Infiltration	0.26	litres/second/ha

Harmon Peaking Factor

$PF = 1 + (14/(4+(P/1000)^{1/2}))$

	Harmon Peak
Total Population	Factor
10	4.41

Flow	0.25	L/s
	-	
Infiltration	0.12	L/s
Total Peak Wastewater Flow	0.13	L/s
Average Dry Weather Flow	0.03	L/s

Counterpoint Engineering Inc.

Project: 2343 Eglinton Avenue West

Project No: 23073

Location: Toronto, Ontario

Net Site Area: 0.446 ha

Proposed Sanitary Flow Calculations

As per Design Criteria for Sewers and Watermains - Second Edition January 2021 City of Toronto Design flow = average daily dry weather flow x peaking factor + infiltration

Persons Per Unit and per Land Use

1BR/1BR+Den	1.4 ppu
2BR/2BR+Den/	2.1 ppu
3BR/3BR+Den	3.1 ppu
Commercial / Retail	1.1 persons/100m ²
Offices	3.3 persons/100m ²

	Residential Units			Retail	
	1B / 1B+D	2B / 2B + D	3B / 3B+D	Total Units	Area (m²)
TOTAL UNITS / AREA (m ²)	348	225	65	638	878

	Population 1BR / 1B + D	Population 2BR / 2BR + D	Population 3BR / 3BR + D	TOTAL POPULATION
Residential	488	473	202	1163
Commercial/Retail	-	-	-	10
Total Equivalent Population				1173

Peak flow Design Parameters

Residential Average flow	240	litres/person/day
Commercial Average flow	180,000	litres/ha/day
Infiltration	0.26	litres/second/ha

Harmon Peaking Factor

$PF = 1 + (14/(4+(P/1000)^{1/2}))$

, ,,	
Residential Population	Harmon Peak Factor
1163	3.76

Residential Flow	12.14	L/s
Retail Flow	0.18	L/s
Infiltration	0.12	L/s
Groundwater Flows	0.00	L/s

Flow	12.44	L/s

Appendix D

Project No.: 23073

March 2025

counterpoint engineering

Allowable Release Rate

Project Name: 2343 Eglinton West

Project Number: 23073

Rational Method - 2 Year Pre-Development

Event:	2	years
ABC's:	A C	21.8 0.78
Time of Concentration:	t	10 min
Runoff Coefficient:	С	0.5
Site Area	Α	0.4612 ha
Intensity i=A/(T) ^c	i	88.19 mm/hr
Flow Q=CiA/360	Q	0.056 m ³ /s 56.5 L/s

Pre-Development Flows (Area ID 100) - to 750mm Combined on Caledonia Road

Project Name: 2343 Eglinton West

Project Number: 23073

Rational Method - 2-Year Pro	e-Development	Rational Method - 5-Year	Pre-Development	Rational Method - 10-Ye	ear Pre-Development
Event:	2 years	Event:	5 years	Event:	10 years
ABC's:	A 21.8 C 0.78	ABC's:	A 32 C 0.79	ABC's:	A 38.7 C 0.8
Time of Concentration:	t 10 min	Time of Concentration:	t 10 min	Time of Concentration:	t 10 min
Runoff Coefficient:	C 0.87	Runoff Coefficient:	C 0.87	Runoff Coefficient:	C 0.87
Site Area	A 0.4020 ha	Site Area	A 0.4020 ha	Site Area	A 0.4020 ha
Intensity i=A/(T) ^c	i 88.19 mm/hr	Intensity i=A/(T) ^c	i 131.79 mm/hr	Intensity i=A/(T) ^c	i 162.27 mm/hr
Flow Q=CiA/360	Q 0.09 m ³ /s 86 L/s	Flow Q=CiA/360	Q 0.13 m³/s 128 L/s	Flow Q=CiA/360	Q 0.16 m ³ /s 158 L/s
Rational Method - 25-Year P	Pre-Development	Rational Method - 50-Yea	r Pre-Development	Rational Method - 100-Y	ear Pre-Development
	<u>Pre-Development</u>	Rational Method - 50-Yea	r Pre-Development 50 years	Rational Method - 100-Y	Year Pre-Development 100 years
		_			
Event:	25 years A 45.2	Event:	50 years A 53.5	Event:	100 years A 59.7
Event:ABC's:	25 years A 45.2 C 0.8	Event: ABC's:	50 years A 53.5 C 0.8	Event: ABC's:	100 years A 59.7 C 0.8
Event: ABC's: Time of Concentration:	25 years A 45.2 C 0.8 t 10 min	Event: ABC's: Time of Concentration:	50 years A 53.5 C 0.8 t 10 min	Event: ABC's: Time of Concentration:	100 years A 59.7 C 0.8 t 10 min
Event: ABC's: Time of Concentration: Runoff Coefficient:	25 years A	Event: ABC's: Time of Concentration: Runoff Coefficient:	50 years A 53.5 C 0.8 t 10 min C 0.87	Event: ABC's: Time of Concentration: Runoff Coefficient:	100 years A 59.7 C 0.8 t 10 min C 0.87

Pre-Development Flows (Area ID 101) - to 300mm Combined on Gilbert Ave.

Project Name: 2343 Eglinton West

Project Number: 23073

Rational Method - 2-Year P	Pre-Development	Rational Method - 5-Year P	re-Development	Rational Method - 10-Year	Pre-Development
Event:	2 years	Event:	5 years	Event:	10 years
ABC's:	A 21.8 C 0.78	ABC's:	A 32 C 0.79	ABC's:	A 38.7 C 0.8
Time of Concentration:	t 10 min	Time of Concentration:	t 10 min	Time of Concentration:	t 10 min
Runoff Coefficient:	C 0.90	Runoff Coefficient:	C 0.90	Runoff Coefficient:	C 0.90
Site Area	A 0.0590 ha	Site Area	A 0.0590 ha	Site Area	A 0.0590 ha
Intensity i=A/(T) ^c	i 88.19 mm/hr	Intensity i=A/(T) ^c	i 131.79 mm/hr	Intensity i=A/(T) ^c	i 162.27 mm/hr
Flow Q=CiA/360	Q 0.01 m ³ /s 13 L/s	Flow Q=CiA/360	Q 0.02 m ³ /s 19 L/s	Flow Q=CiA/360	Q 0.02 m ³ /s 24 L/s
Rational Method - 25-Year	Pre-Development	Rational Method - 50-Year I	Pre-Development	Rational Method - 100-Yea	r Pre-Development
Rational Method - 25-Year Event:	Pre-Development 25 years	Rational Method - 50-Year I	Pre-Development 50 years	Rational Method - 100-Yea	r Pre-Development 100 years
Event:	25 years A 45.2	Event:	50 years A 53.5	Event:	100 years A 59.7
Event:ABC's:	25 years A 45.2 C 0.8	Event:ABC's:	50 years A 53.5 C 0.8	Event:ABC's:	100 years A 59.7 C 0.8
Event: ABC's: Time of Concentration:	25 years A 45.2 C 0.8 t 10 min	Event: ABC's: Time of Concentration:	50 years A 53.5 C 0.8 t 10 min	Event: ABC's: Time of Concentration:	100 years A 59.7 C 0.8 t 10 min
Event: ABC's: Time of Concentration: Runoff Coefficient:	25 years A 45.2 C 0.8 t 10 min C 0.90	Event: ABC's: Time of Concentration: Runoff Coefficient:	50 years A 53.5 C 0.8 t 10 min C 0.90	Event: ABC's: Time of Concentration: Runoff Coefficient:	100 years A 59.7 C 0.8 t 10 min C 0.90

Post-Development Uncontrolled 100-Year Release Rate

Project Name: 2343 Eglinton West

Project No: 23073

Rational Method - 100-Year Post-Development

Event:	100	years
ABC's:	a c	59.7 0.8
Time of Concentration:	t	10 min
Runoff Coefficient:	С	0.60
Site Area	Α	0.017 ha
Intensity $i=a/(t+b)^c$	i	250.32 mm/hr
Flow Q=CiA/360	Q	0.007 m ³ /s 6.9 L/s

Quantity Control Summary

Project Name: 2343 Eglinton West

Project No: 23073

Rainfall Data				
Location:	Toronto	а	59.7	
Event	100 Year	b	0	
		С	0.8	

Area ID	Area (ha)	Runoff Coefficient	t _c	Storage Available (m³)	Storage Required (m³)	100-Year Release Rate (L/s)	Description	Orifice Size (mm)
UNC	0.0165	0.60	10	N/A	N/A	6.9	Uncontrolled	
SITE	0.4446	0.82	10	168	134	34.0	Orifice	at SPA
Totals:	0.4611					40.9		

NOTES:

On-site storage will be provided via an underground storage tank.

SITE

0112				
Composite RC Value		Area [ha]	RC	RC * Area
Green Roof		0.0106	0.45	0.0047
Impervious Roof		0.2952	0.90	0.2657
Impervious Area		0.0923	0.90	0.0826
Pervious Area		0.0465	0.25	0.0114
		0.4446	Total	0.3644
	Div	0.82		

UNC

Composite RC Value		Area [ha]	RC	RC * Area	
Impervious Area			0.0090	0.90	0.0081
Pervious Area			0.0075	0.25	0.0019
			0.0165	Total	0.0100
		Divided by Total Area =			0.60

Quantity Control Storage Requirement

Project Name: 2343 Eglinton West

Project Number: 23073

Rainfall Data				
Location:	Toronto	а	59.700	
Event	100 Year	b	0.000	
		С	0.800	

Site D	Site Data		
Area ID	SITE		
Area	0.445	ha	
Runoff Coefficient	0.82		
AC	0.36		
Tc	10		
Time Increment	10		
Release Rate	34.0	L/s	
Storage Required	134	m^3	

Time	Rainfall Intensity	Storm Runoff	Runoff Volume	Released Volume	Storage Volume	
(min)	(mm/hr)	(m ³ /s)	(m ³)	(m ³)	(m ³)	
()	(,	(*** , **)	(***)	(***)	(111)	
10	250	0.25	152	20	132	
20	144	0.15	175	41	134	*****
30	104	0.11	190	61	128	
40	83	0.08	201	82	119	
50	69	0.07	210	102	108	
60	60	0.06	218	122	95	
70		0.05	225	143	82	
80		0.05	231	163	67	
90		0.04	236	184	53	
100		0.04	241	204	37	
110		0.04	246	224	21	
120		0.03	250	245	5	
130		0.03	254	265	-11	
140		0.03	258	286	-28	
150		0.03	262	306	-44	
160		0.03	265	326	-61	
170		0.03	268	347	-79	
180		0.03	271	367	-96	
190		0.02	274	388	-113	
200		0.02	277	408	-131	
210		0.02	280	428	-149	
220		0.02	282	449	-166	
230	20	0.02	285	469	-184	

Water Balance

City of Toronto's Green Standard Version 4 Tier 1 Project Name:

2343 Eglinton West

Project No.: 23073

Initial Abstraction Impervious Paved, I	1	mm	
Initial Abstraction Pevrious Landscaped, P	5	mm	
Initial Abstraction Non-Green Roof, R	1	mm	
Initial Abstraction Green Roof, GR	5	mm	
Toronto's small design rainfall event has 5mm excess rainfall			

Type of Area	Area	Units	% Redevelopment Area	Overall Initial Abstraction (mm)
Green Roof	0.0106	ha	2.3%	0.11
Non-Green Roof Area	0.2952	ha	64.0%	0.64
Impervious / Paved Area	0.1013	ha	22.0%	0.22
Pervious / Landscaped Area	0.0540	ha	11.7%	0.59
Total Area	0.4611	ha	100.0%	1.56

Section WQ1.1

Initial Abstraction

= Percent Non Green Roof * R + Percent Paved * I + Percent Green Roof * GR

+ Percent Landscaped * P

Initial Abstraction= 0.640 x 1mm + 0.220 x 1mm + 0.023 x 5mm + 0.117 x 5mm

Initial Abstraction (credit)= 1.56 mm

Required Development Retention = (Excess Rainfall - Initial Abstraction) * (Total Development Area) Required Development Retention = (5mm mm) x (0.4611)ha

Required Development Retention (debit)= 15.9 m³

Quality Control
Project Name:
Project No.: 2343 Eglinton West 23073

Type of Area	Initial Treatment Measures	Initial TSS Removal (%)	Secondary TSS Removal (%)	Total TSS Removal (%)	Area	Units	Percent Redevelopment Area (%)	Overall % TSS Removal Efficiency
SITE	mododioo	itomovai (70)	11011101411 (70)	Romovai (70)	Alca	Offics	A100 (70)	Lillololloy
Green Roof	Inherent	80%	0%	80%	0.0106	ha	2.3%	1.8%
Non-Green Roof Area	Inherent	80%	0%	80%	0.2952	ha	64.0%	51.2%
Impervious / Paved Area	N/A	0%	80%	80%	0.0923	ha	20.0%	16.0%
Pervious / Landscaped Area	Inherent	80%	80%	96%	0.0465	ha	10.1%	9.7%
UNC								
Impervious / Paved Area	N/A	0%	0%	0%	0.0090	ha	2.0%	0.0%
Pervious / Landscaped Area	Inherent	80%	0%	80%	0.0075	ha	1.6%	1.3%
Total Area		-			0.4611	ha	100.0%	80.1%

1764174 Ontario Inc. 2343 Eglinton Avenue West

Appendix E

Project No.: 23073

March 2025

Groundwater Environmental Management Services

Hydrogeological Report

2343 Eglinton Avenue West, Toronto, Ontario

Project: 24-0022

4 February 2025

Prepared For: 1764174 Ontario Inc. 3080 Dufferin Street Toronto, ON M6A 2S6 Prepared By: Groundwater Environmental Management Services Inc. 150 Rivermede Road, Unit 9 Concord, ON, L4K 3M8

Contents

1.0	Int	roductic	n	. 1
2.0	Site	e Condit	ions	. 1
	2.1	Loca	tion and Land Usage	. 1
	2.2	Prop	osed Development	. 2
3.0	Me	thodolo	gy	. 2
	3.1	Drilli	ng Program	. 2
	3.2	Hydr	aulic Testing	. 2
	3.3	Wate	er Quality Sampling	. 2
4.0	Ge	ology an	nd Hydrogeological Setting	.3
	4.1	Subs	urface Investigation	.3
	4.2	Strat	igraphy and Hydrogeological Conditions	. 4
		4.2.1	Surface Cover	. 4
		4.2.2	Fill	. 4
		4.2.1	Native Soil	. 4
		4.2.2	Sandy Clayey Silt (Till)	. 4
		4.2.3	Sand / Sandy Silt / Sand and Silt	. 4
		4.2.4	Silt and Clayey Silt / Clayey Silt	. 4
	4.3	Grou	ndwater Level/Elevation Monitoring	. 4
	4.4	Singl	e Well Response Tests	. 6
	4.5	Grou	ndwater Quality	.7
5.0	Sho	ort and I	ong-Term Discharge Rates	.8
	5.1	Shor	t-Term Construction Dewatering	.8
	5.2	Cons	truction Dewatering Rates	.9
	5.3	Long	-Term Seepage Rates	.9
6.0	Pot	tential fo	or Adverse Effects	.9
	6.1	Regu	lated and Sensitive Areas	10
	6.2	MEC	P Well Records and Groundwater Resources	10
	6.3	Settl	ement	10
	6.4	Reco	mmended Additional Fieldwork and Monitoring	10

7.0	Qualified Professional (QP) Information	11
8.0	Conclusion	12
	Limitations	
	References	
	Closing	

List of Figures

Figure 1 Regional Location Plan

Figure 2 Detailed Site Plan

Figure 3 Surface Geology and MECP Wells

List of Appendices

Appendix A Architectural Drawings

Appendix B Borehole Logs

Appendix C Hydraulic Conductivity

Appendix D Water Quality Analysis

Appendix E Dewatering Calculations

Appendix F MECP Wells within 500 m Radius

1.0 Introduction

Groundwater Environmental Management Services Inc. (GEMS) has been retained by 1764174 Ontario Inc. (the client) to prepare a Hydrogeological Report for a proposed mixed-use residential and commercial building located at 2343 Eglinton Avenue West in Toronto, Ontario. The location of the Site is illustrated in **Figure 1**.

The coordination drawing set provided by RAW dated on 7 August 2024, included as **Appendix A**, indicate the gross site area is not to exceed 4,631 squared metres (m²). The proposed development is to include the construction of a single mixed-use residential and commercial building with 2 levels of underground parking. The excavation for underground levels is assumed to extend approximately 8.2 m below ground surface to 149.20 metres above sea level (masl).

The highest water table elevation recorded at the Site during this investigation was 151.46 masl. This suggests that excavation for the two below grade parking levels will require short-term construction dewatering to maintain a dry excavation during construction.

GEMS has reviewed the available relevant geological, environmental, and geotechnical information and has prepared this Hydrogeological Report in support of the proposed development in accordance with the Ontario Water Resources Act, Ontario Regulation 387/04, and Toronto Municipal Code Chapter 681-Sewers.

GEMS' scope of work included:

- Review of hydrogeological conditions and environmental information based on previous reports prepared for the Site
- Review of Borehole Logs created by GEMS (2023)
- Groundwater level monitoring
- Hydraulic Conductivity Testing
- Water quality analysis

- Calculation of short-term construction dewatering and long-term groundwater seepage
- Assessment of potential adverse environmental effects
- Assessment of MECP well records within 500 m of the Site

2.0 Site Conditions

2.1 Location and Land Usage

The Site is a rectangular shaped lot located at the address 2343 Eglinton Avenue West. It is on the southwest corner of Eglinton Avenue West and Caledonia Road and is approximately 2.2 kilometers west of Allen Road and 3.5 kilometres south of Highway 401 [1]. The nearest surface water body is the Humber River, located 3.6 km west of the site. The site is currently zoned as commercial residential [2].

Lands within 500 m of the Site generally consist of commercial residential, residential, open space, and residential apartment [2].

North: Commercial Residential, Residential, and Open Space.

East: Commercial Residential, Residential, and Open Space.

South: Residential, Commercial Residential, and Open Space.

West: Commercial Residential, Residential, Open Space, and Residential Apartment.

2.2 Proposed Development

1764174 Ontario Inc.'s proposed development consists of the construction of 2 residential towers at 6 and 42 storeys overtop 1 6-storey commercial podium with 2 levels of underground parking. The development will occupy an approximate total area of $4,631 \, \text{m}^2$ as shown in the architectural drawings. The excavation is not expected to exceed more than $4,482 \, \text{m}^2$.

The Architectural Drawings for the proposed development are provided in **Appendix A.**

3.0 Methodology

3.1 Drilling Program

On 2 October 2023 to 10 October 2023, GEMS carried out a field investigation including the advancement of 5 boreholes denoted as MW1 through MW5 in support of their geotechnical investigation. All boreholes were equipped with schedule-40, Polyvinyl chloride (PVC) monitoring wells, with screened intervals of 3.0 m length at their base.

The monitoring wells were installed to evaluate static groundwater elevations, conduct hydraulic testing, and obtain water quality samples. All monitoring wells were purged prior to sampling using a Waterra inertial lift pump by purging at least three well volumes or until the monitoring well was purged dry. Borehole logs are provided in **Appendix B**, and a detailed Site Plan showing the borehole and monitoring well locations is presented in **Figure 2**.

3.2 Hydraulic Testing

On 10 September 2024, GEMS personnel visited the Site to complete Single Well Response Tests (SWRTs) on the monitoring wells installed in MW2 and MW4 to evaluate the hydraulic properties of the subsurface materials at the Site.

The SWRTs consisted of rising head testing performed by 'instantaneously' removing a pre-determined volume of water (a slug). Water level recovery back to static conditions was monitored using an automated water level logging device with 1 second measurement intervals and validated with manual measurements. A dedicated baro-logger was set above the water table to allow the data to be compensated for changes in atmospheric pressure.

3.3 Water Quality Sampling

On 26 October 2023, a groundwater sample was collected by GEMS personnel for an initial water quality characterization to inform decisions on means and methods related to groundwater management during construction. The sample was taken from monitoring well MW4 in accordance with GEMS' standard operating procedure for Groundwater Sampling. Using a new dedicated bailer and sterile nitrile gloves preserves sample integrity and prior to sampling activities using a Waterra inertial lift pump by purging at least three well volumes or until the monitoring well was purged dry ensures that the results are

representative of in-situ groundwater conditions. The sample collection was not filtered.

The collected groundwater sample was packed with ice in a cooler to maintain sample temperature, and the cooler was sealed and transported for analysis to Bureau Veritas, a Canadian laboratory accredited and licensed by the Standards Council of Canada and/or the Canadian Association for Laboratory Accreditation.

The sample was tested for all parameters denoted in the City of Toronto Storm Sewer and Sanitary Combined Sewer Use By-law criteria to assess the potential for discharge to the local sewer system.

4.0 Geology and Hydrogeological Setting

The Site is situated in the physiographic region detailed as the South Slope, characterized as shallow shale and till plains that slope southward towards Lake Ontario [3]. Surficial geology at the site primarily consists of deposits of Stone-poor, sandy silt to silty sand-textured till [4]. The surficial geology of the Site is displayed in **Figure 3**.

The bedrock underlaying the Site is part of the Georgian Bay Formation composed primarily of shale and limestone [5].

4.1 Subsurface Investigation

All boreholes were evaluated for this report. Boreholes MW1 through MW5 were advanced to depths between 20.0 and 40.1 metres below grade (mbg) with elevations ranging from 138.0 to 116.9 masl.

Boreholes MW1, MW2, MW3, MW4, and MW5 were installed with monitoring wells, to depths of approximately 7.9 to 19.8 mbg with elevations ranging from 150.1 to 136.2 masl. Borehole logs of the monitoring wells are provided in **Appendix B**.

The ground surface elevations at the locations of the boreholes were established utilizing a TopCon HiPer V GNSS positioning device.

The details of borehole advancement and the approximate well elevations are summarized below in **Table 4.1**.

Table 4.1 Bo	Table 4.1 Borehole Details							
Borehole ID/Well ID	Date Installed (YYYY-MM-DD)	Ground Elevation (masl)	Borehole Depth (mbg)	Borehole Depth (masl)	Well Screen Top (masl)	Well Screen Bottom (masl)		
MW1	2023-09-27	159.04	40.1	118.94	154.1	151.1		
MW2	2023-10-10	158.12	20.0	138.12	153.2	150.2		
MW3	2023-10-02	158.69	20.0	138.69	153.8	150.8		
MW4	2023-09-26	159.14	20.0	139.14	142.4	139.4		
MW5	2023-10-04	158.21	40.1	118.11	153.3	150.3		

4.2 Stratigraphy and Hydrogeological Conditions

Details of the subsurface and groundwater conditions at the site are given on the Borehole Log Sheets attached in **Appendix B** of this report.

The following paragraphs present a commentary on the various soil materials contacted in the boreholes. Commentary on the engineering properties of the contacted soil materials is reviewed in the Geotechnical Report, submitted under separate cover.

It should be noted that the boundaries of soil types indicated on the borehole logs are inferred from non-continuous soil sampling and observations made during drilling. These boundaries are intended to reflect transition zones for the purpose of geotechnical design, and therefore, should not be construed as exact planes of geological change.

4.2.1 Surface Cover

A 70-75 mm thick layer of asphaltic concrete is present at the ground surface of all Boreholes.

4.2.2 Fill

A fill material consisting of a gravelly sand or silty sand with varying clay concentrations can be found in all boreholes below the Asphaltic concrete layer.

4.2.1 Native Soil

The native soils present below the fill material consist predominantly of sandy clayey silt till, sand and silt, sand, silt and clayey silt, clayey silt, and sandy silt.

4.2.2 Sandy Clayey Silt (Till)

Sandy clayey silt till is present in all boreholes underlaying the fill. It extends to depths ranging from 5.6 mbg to 9.2 mbg. The sandy silt till is a glacial deposit consisting of a random mixture of soil particles ranging from clay to gravel, with silt being the predominant fraction.

The sandy clayey silt till is brown in colour and moist in appearance.

4.2.3 Sand / Sandy Silt / Sand and Silt

Sand / sandy silt / sand and silt are present below the sandy clayey silt till layer in all boreholes. It extends to depths of 25.6 mbg in MW1, 24.6 mbg in MW5, and the explored depths of MW2, MW3, and MW4.

The sand / sandy silt / sand and silt are brown in colour to the explored depths of MW3 and MW4, becoming grey at depths ranging from 13.2 mbg to 19 mbg in MW1, MW2, and MW5, and is moist to very wet in appearance.

4.2.4 Silt and Clayey Silt / Clayey Silt

Silt and clayey silt / clayey silt are present beneath the sand / sandy silt / sand and silt layers in MW1 and MW5. It extends to the explored depths of both Boreholes.

The silt and clayey silt / clayey silt are grey in colour and moist in appearance.

4.3 Groundwater Level/Elevation Monitoring

GEMS completed six site visits from 29 August 2024 to 4 November 2024 to obtain water level

measurements from the five monitoring wells (MW1, MW2, MW3, MW4, and MW5). The groundwater monitoring results collected to date are summarized below in **Table 4.3**.

Table 4.3: Monitoring Well Summary and Groundwater Elevations

	Screened Unit and	Ground	Static Water Levels				
Well ID	Screen Depth (masl)	Elevation (masl)	Date (YYYY-MM-DD)	Water Level (mbg)	Water Elevation (masl)	Average (masl)	
			2024-08-29	7.83	151.21		
San MW1			2024-09-10	DRY	DRY		
	Sandy Clayey Silt Till	159.04	2024-09-27	7.82	151.22	151.21	
IVIVVI	154.1 – 151.1	159.04	2024-10-09	7.83	151.21	151.21	
			2024-10-23	7.84	151.21		
			2024-11-04	04 7.83 151.21 29 6.54 152.50 10 6.71 152.33 27 6.79 152.25 109 6.80 152.24			
			2024-08-29	6.54	152.50		
			2024-09-10	6.71	152.33		
N 4114/2	Sandy Clayey Silt	158.12	2024-09-27	6.79	152.25	152 17	
MW2 Till 153.2 – 150.2		156.12	2024-10-09	6.80	152.24	152.17	
			2024-10-23	6.86	152.18		
			2024-11-04	6.87	152.17		
			2024-08-29	6.59	152.45	152.43	
			2024-09-10	DRY	DRY		
	Sand / Sandy	158.69	2024-09-27	6.59	152.45		
MW3	Clayey Silt Till 153.8 – 150.8		2024-10-09	6.60	152.44		
			2024-10-23	6.61	152.43		
			2024-11-04	6.61	152.43		
			2024-08-29	13.38	145.66		
			2024-09-10	13.35	145.69		
	Sand and Silt		2024-09-27	-	-		
MW4	142.4 – 139.4	159.14	2024-10-09	13.20	145.84	145.71	
			2024-10-23	13.31	145.73		
			2024-11-04	13.33	145.71		
			2024-08-29	6.97	152.07		
	Sandy Clayey Silt		2024-09-10	7.33	151.71		
MW5	Till 153.3 – 150.3	158.21	2024-09-27	7.72	151.32	151.31	
			2024-10-09	7.74	151.30		

Table 4.3: Monitoring Well Summary and Groundwater Eleva	tions

Well ID S	Screened Unit and Screen Depth (masl)	Ground Elevation (masl)	Static Water Levels			
			Date (YYYY-MM-DD)	Water Level (mbg)	Water Elevation (masl)	Average (masl)
			2024-10-23	7.73	151.31	
			2024-11-04	7.73	151.31	

Groundwater elevations at the Site during the monitoring period ranged from 145.66 to 152.50 masl, and the highest level was observed in MW2 on 29 August 2024. The water table is interpreted as being approximately 150.63 masl based on an average of the water levels observed in MW1, MW2, MW3, MW4, and MW5 for the purpose of this report.

Water levels may vary due to seasonal fluctuations and precipitation.

4.4 Single Well Response Tests

Hydraulic conductivity values were calculated based on single well response tests (SWRTs) completed on 2 of the monitoring wells installed on site. On 10 September 2024, GEMS was on-Site to carry out the SWRTs, 4 total SWRTs were conducted. 3 SWRTs were completed in MW4 and 1 SWRT was completed in MW2.

For each SWRT, a 'slug' of water was removed from the well, and the water level recovery was monitored for 30 minutes thereafter, or until the well returned to its static level. Estimations of hydraulic conductivity were made in AQTESOLV Aquifer Test Analysis Software using the Hvorslev Method based on the rate of recovery [6]. Hydraulic Conductivity analysis graphs for each SWRT are provided in **Appendix C**.

The Hvorslev was chosen for its versatility and is based on the following assumptions:

- Water-bearing unit has infinite areal extent;
- Water-bearing unit is homogeneous and of uniform thickness;
- Water bearing unit is confined or unconfined;
- Water table is initially horizontal prior to testing;
- The well is fully or partially penetrating the water-bearing unit;
- The slug is instantaneously removed from the well; and,
- Groundwater flow is steady.

The estimated hydraulic conductivity results for all SWHTs are presented in Table 4.4.

Table 4.4: Hydraulic Conductivity Results from Single Well Response Tests							
Well ID	Screened Unit	Screen Interval (masl)	SWRT	Hydraulic Conductivity (m/s)	Geometric Mean		
MW2	Sandy Clayey Silt Till	153.1 – 150.1	1	5.36 x 10 ⁻⁸	5.4 x 10 ⁻⁸		
MW4	Sand and Silt	139.2 – 136.2	1	1.48 x 10 ⁻⁶	1.6 x 10 ⁻⁶		

	2	1.98 x 10 ⁻⁶	
	3	1.52 x 10 ⁻⁶	
Geometric Mean Hydraulic Conductivity (m/	3.0 x 10 ⁻⁷		
Highest Hydraulic Conductivity (m/s) for all S	1.98 x 10 ⁻⁶		

The hydraulic conductivity results for tests in MW2 and MW4 ranged from 1.98 x 10^{-6} m/s to 5.36 x 10^{-8} m/s, with an overall geometric mean of 3.0 x 10^{-7} m/s.

The geometric mean of the hydraulic conductivity estimates for the silt and sand is 1.6×10^{-6} m/s, and for the sandy clayey silt till is 5.4×10^{-8} m/s. These fall within the textbook ranges for the screened materials [7].

4.5 Groundwater Quality

On 26 October 2023, a groundwater sample was collected from monitoring well MW4 to characterize the in-situ groundwater quality at the Site. The water quality analysis results are included in **Appendix D**.

Water quality results were compared to the following criteria:

- City of Toronto Sanitary and Combined By-Law
- City of Toronto Storm Sewer By-Law

The water quality exceeded the City of Toronto Storm Sewer Discharge Guidelines criteria for Phenols-4AAP, Total Suspended Solids (TSS), Total Manganese (Mn), Total PAHs, Benzene, Chloroform, Ethylbenzene, Toluene, and Total Xylenes. It also exceeded the City of Toronto Sanitary and Combined Sewer Discharge Guidelines for Benzene and Toluene.

Exceedances to these criteria is identified and are summarized in **Table 4.5**, with the criteria exceeded in bold.

Table 4.5: Water Quality Results Exceeding Discharge Criteria						
Water Quality Parameters	Units	MW4 Results	Storm Criteria	Sanitary Criteria		
Phenols-4AAP	mg/L	0.033	0.008	1.0		
Total Suspended Solids (TSS)	mg/L	104	15	350		
Total Manganese (Mn)	ug/L	170	50	5000		
Total PAHs	ug/L	ND (1)	2	5		
Benzene	ug/L	510	2	10		
Chloroform	ug/L	5.7	2	40		
Ethylbenzene	ug/L	130	2	160		
Toluene	ug/L	560	2	16		
Total Xylenes	ug/L	320	4.4	1400		

ND (1): Reportable detection limit exceeds Storm Criteria

Groundwater quality is expected to change over time during active construction dewatering. The

dewatering contractor should assess the groundwater quality before any water-taking and discharging activities.

5.0 Short and Long-Term Discharge Rates

5.1 Short-Term Construction Dewatering

A construction dewatering system design may include well points, several sump pumps, and/or a network of gravity drains. Implementing a dewatering system is the responsibility of the property owner. A qualified dewatering contractor with experience in construction dewatering should be retained to design and outline the methodology of the dewatering system.

Excavation for installation of the foundations at the project will require that the groundwater level be lowered to a depth at least 1 m below the excavation invert.

A summary of the dewatering estimate assumptions is outlined in **Table 5.1**.

Table 5.1: Dewatering Estimate Assumptions					
Input Parameters	Assumption	Notes			
Ground Surface Elevation	158.64 masl	Average surface elevation at the borehole locations.			
Finished Floor Elevation (FFE)	150.2 masl	FFE of parking level 2			
Excavation Invert	149.2 masl	Assumed 1.0 metre below FFE			
Dewatering Target Elevation	148.2 masl	Assumed to be 1.0 metre below the excavation invert			
Excavation Area	87 m x 52 m	Area of excavation based on coordination drawing set provided by RAW in August 2024.			
Max Anticipated Groundwater Elevation	154.0 masl	Maximum groundwater elevation at the Site recorded during 29 August 2024 water level measurements + 1.5 metres for peak season fluctuation allowance.			
Base of Aquifer	112.03 masl	Assumed at bedrock surface (based on approximate bedrock elevations from the ORMGP database)			
Hydraulic Conductivity (K)	1.98 x 10 ⁻⁶ m/s	Highest K value estimated from SWRT tests (MW2 and MW4)			

Dewatering estimates have been calculated assuming an excavation invert of 148.2 masl. On-site water level measurements show the water table ranges between approximately 145.66 to 152.50 masl. The maximum anticipated groundwater level is assumed to be at 154.0 masl to account for natural fluctuation of groundwater elevations. The maximum anticipated groundwater elevation is 5.8 m above the assumed dewatering target elevation (148.2 masl). Therefore, short-term construction dewatering is anticipated.

Construction dewatering rates were calculated using the methods outlined by Powers [8] for radial flow, water table aquifer based on the above dewatering estimate input parameters used, and a safety factor of 1.5 for construction dewatering rates and a safety factor of 1.2 for long-term seepage rates.

The Radius of Influence (ROI) due to construction dewatering is estimated to be 64.3 m from the site boundary once steady-state dewatering is reached after 40 days. The dewatering area and ROI can be seen in **Figure 2**.

5.2 Construction Dewatering Rates

Based on the above dewatering estimate assumptions, the calculated dewatering rate for initial drawdown (7 days) is 185,668 L/day (128.9 L/min). Including a safety factor of 1.5, the calculated dewatering rate for initial drawdown (7 days) is 278,502 L/day (193.4 L/min).

Once steady-state conditions have been reached (40 days), the calculated dewatering rate is 129,331 L/day (89.8 L/min).

It is also necessary to account for contributions from significant precipitation events. Assuming an excavation with dimensions of approximately 87 m \times 52 m for the proposed building, the total surface area of the excavation will be 4,524 m². Anticipating a 15 mm daily rainfall event, the volume of rainwater contributed to this area would be 67,860 L.

The estimated maximum dewatering rate including the rainfall contribution is 346,362 L/day (240.5 L/min). Calculations are presented in **Appendix E**.

A dewatering contractor should be retained to evaluate the dewatering methods.

Based on the above estimate, a Permit to take Water would not be required for water taking during the dewatering and construction of the proposed development, as the forecasted groundwater dewatering rate is less than 400,000 L/day.

Based on the above estimate, an Environmental Activity and Sector Registry (EASR) would be required for water taking during the dewatering and construction of the proposed project, as the forecasted groundwater dewatering rate is greater than 50,000 L/day.

5.3 Long-Term Seepage Rates

It is assumed that the proposed development will be designed and constructed as water-tight without need for long-term foundation drainage.

However, if a drained foundation is used, the post-construction maximum permanent seepage has been estimated using an assumed pumping time of 365 days. Similar to the short-term dewatering rates, the long-term seepage rate assumes all of the same conditions described in Section 5.1.

The long-term seepage rate forecast at 365 days of continuous pumping with a safety factor of 1.2 is 27,878 L/day (19.4 L/min).

Since long-term dewatering is forecast to be less than 50,000 L/day, a Permit to Take Water (PTTW) will not be required from the MECP for the long-term water taking of ground water if the building is not constructed with a water-tight foundation.

6.0 Potential for Adverse Effects

The following section identifies potential adverse environmental effects of the proposed construction dewatering program.

6.1 Regulated and Sensitive Areas

According to the MECP Source Protection Information Atlas the Site is located within the Toronto Source Protection Area (TSPA) [9].

The Site is not located in an area of development control, as defined by the Niagara Escarpment Planning & Development Act or on the Oak Ridges Moraine Conservation Area, as defined by the Oak Moraine Conservation Plan.

6.2 MECP Well Records and Groundwater Resources

The area within 500 m of the Site is serviced by the City of Toronto municipal water. The City of Toronto obtains its water supply from Lake Ontario. Therefore, there is no potential for groundwater interference complaints during construction dewatering activities.

A copy of the Ministry of Environment, Conservation and Parks (MECP) well listings within 500 metres of the Site are provided in **Appendix F**. The wells within 500 metres of the Site are displayed in **Figure 3**.

There are 144 wells identified within the 500 m area surrounding the Site:

- 33 of the wells identified are documented to be monitoring wells;
- 29 of the wells are documented to be dewatering wells;
- 8 of the wells are documented to be test holes;
- 29 well are documented as monitoring and test holes;
- 4 wells not in use; and
- 1 well labeled as "other".
- There is no information for the remaining 40 wells identified.

There are 15 wells identified in the MECP water wells database located within the ROI that are not anticipated to be decommissioned during construction of the proposed building.

Prior to construction, any inactive monitoring wells at the Site should be properly decommissioned by a drilling contractor licensed by the MECP, following Ontario Regulation 903.

6.3 Settlement

While given the very stiff to hard consistency of the clayey soils, and dense to very dense compactness condition of the sandy soils underlying the site, the anticipated dewatering of the site to lower the groundwater table below the base of the proposed excavation is not anticipated to result in significant settlement of structures adjacent to the subject Site, it is recommended that once the development plans have been finalized and the base of the proposed excavation established, a settlement analysis be carried out by the geotechnical engineer to determine the magnitude of the settlement, if any.

6.4 Recommended Additional Fieldwork and Monitoring

Monitoring and additional fieldwork are recommended during temporary construction dewatering:

A EASR will need to be registered with the MECP to allow for water taking during construction. As

a requirement of the EASR, daily water taking volumes must be reported to the MECP on or before March 31st of each year for the previous calendar year of water taking.

 Monitoring of the discharge water quantity is required to ensure compliance with the discharge agreement and/or EASR conditions. GEMS recommends the following program for monitoring the groundwater taking and discharge volumes:

Location: A flow meter attached to the discharge pipe of the dewatering system.

Parameter: Total volume of discharge, date, and time of measurement.

Schedule: Minimum of daily recording by on-Site personnel, with values reported to the Project

supervisor weekly for submission to the city, Region and/or MECP.

Trigger: Discharge volume exceeds the maximum rate of dewatering specified in the

discharge agreement and/or the EASR.

Mitigation: Immediately reduce the pumping rate so that discharge is within the permitted limit.

Reporting: Values reported to the Project supervisor weekly for submission to the city, Region

and/or MECP.

7.0 Qualified Professional (QP) Information

This Water Taking and Discharge Report was prepared by Logan McNabb, who holds a Bachelor of Environmental Engineering, and reviewed and approved by Dan Menard, a Professional Geoscientist Licensee in Ontario. His expertise relates to geology, hydrogeology, and dewatering.

8.0 Conclusion

Based on the above analysis, the following conclusions and recommendations are offered for the proposed development at the 2343 Eglinton Avenue West, Toronto, Ontario:

- The geology within the Site is characterized as the South Slope, including shallow shale and till plains that slope southward towards Lake Ontario.,
- The bedrock underlaying the Site is part of the Georgian Bay Formation composed primarily of shale and limestone.
 - The silt and sand and sandy clayey silt till at the Site are interpreted to all belong to the same unconfined water-bearing zone or aquifer.
- Hydraulic conductivity for the water-bearing zone (MW2 and MW4) ranged from $1.48 \times 10^{-6} \text{ m/s}$ to $5.36 \times 10^{-8} \text{ m/s}$, with an overall geometric mean of $3.0 \times 10^{-7} \text{ m/s}$.
- Groundwater table at the Site ranges from 145.66 to 152.50 masl.
 - The maximum anticipated groundwater level is estimated at 154.00 masl, incorporating a 1.5 m fluctuation allowance to account for seasonal variations.
- Groundwater quality at the Site currently exceeds both the City of Toronto Sanitary and Combined By-Law guidelines Storm Sewer By-Law guidelines for multiple parameters.
- The maximum anticipated groundwater (154.00 masl) is above the anticipated excavation invert (149.20 masl) and the assumed dewatering target elevation (148.20 masl).
- The maximum estimated rate of construction dewatering including a factor of safety of 1.5 and the contribution of rainfall is 346,362 L/day (240.5 L/min).
- The ROI for construction dewatering is expected to extend to 64.3 m beyond the excavation area.
- If the foundation is not constructed as a water-tight structure, the maximum anticipated long-term groundwater seepage rate including a factor of safety of 1.2 is 27,878 L/day (19.4 L/min).
- Well decommissioning will be required prior to construction. Any inactive wells within the Site should be decommissioned by a licensed well contractor under Ontario Regulation 903.

9.0 Limitations

Groundwater Environmental Management Services Inc. (GEMS) has prepared this report for our client and its agents exclusively. GEMS accepts no responsibility for any damages that may be suffered by third parties as a result of decisions or actions based on this report.

The findings and conclusions are site-specific and were developed in a manner consistent with that level of care and skill normally exercised by environmental professionals currently practicing under similar conditions in the area. Changing assessment techniques, regulations, and site conditions mean that environmental investigations and their conclusions can quickly become dated, so this report is current up to two years from the published date. The report should not be used after that without GEMS review/approval.

The project has been conducted according to our instructions and work program. Additional conditions, and limitations on our liability are set forth in our work program/contract. No warranty, expressed or implied, is made.

10.0 References

- [1] Google. Google Earth. (2024). Accessed: 21 October 2024.
- [2] City of Toronto. "City of Toronto Zoning By-Law 569-2013." map.toronto.ca. Accessed: 4 September 2024. [Online.] Available: https://map.toronto.ca/maps/map.jsp?app=ZBL_CONSULT
- [3] L. J. Chapman, D. F. Putnam, *The Physiography of Southern Ontario: Ontario Geological Survey, 3rd Edition*. Ontario Geological Survey, 2007.
- [4] P. J. Barnett, W. R. Cowan, A. P. Henry. "Quaternary Geology of Southern Ontario, southern sheet." geologyontario.mines.gov.on.ca. Accessed: 21 October 2024. [Online.]. Available: https://www.geologyontario.mines.gov.on.ca/publication/M2556
- [5] Ontario Geological Survey. "Bedrock Geology of Southern Ontario, southern sheet." geologyontario.mines.gov.on.ca. Accessed: 21 October 2024. [Online.]. Available: https://www.geologyontario.mines.gov.on.ca/publication/M2544
- [6] M. J. Hvorslev. *Time Lag and Soil Permeability in Ground-Water Observations*. Bulletin No. 36, Waterways Experiment Station Corps of Engineers, U.S. Army, 1951.
- [7] R. A. Freeze, J. A. Cherry. *Groundwater*. Prentice-Hall Inc., Englewood Cliffs, 1979.
- [8] P. Powers, A. Corwin, P. Schmall, W. Kaeck. *Construction Dewatering and Groundwater Control, New Methods and Third Applications*. John Wiley & Sons, Inc., 2007.
- [9] Ministry of the Environment, Conservation and Parks. "Source Protection Information Atlas."

 lioapplications.lrc.gov.on.ca. Accessed: 21 October 2024. [Online.] Available: https://www.lioapplications.lrc.gov.on.ca/SourceWaterProtection/index.html?viewer=SourceWaterProtection.SWPViewer&locale=en-CA

11.0 Closing

We trust this information will meet your current requirements. Please do not hesitate to contact the undersigned should you have any questions or require additional information.

Yours truly,

Groundwater Environmental Management Services Inc.

Prepared By:

Logan McNabb, B.Eng., EIT

Project Manager

Reviewed By:

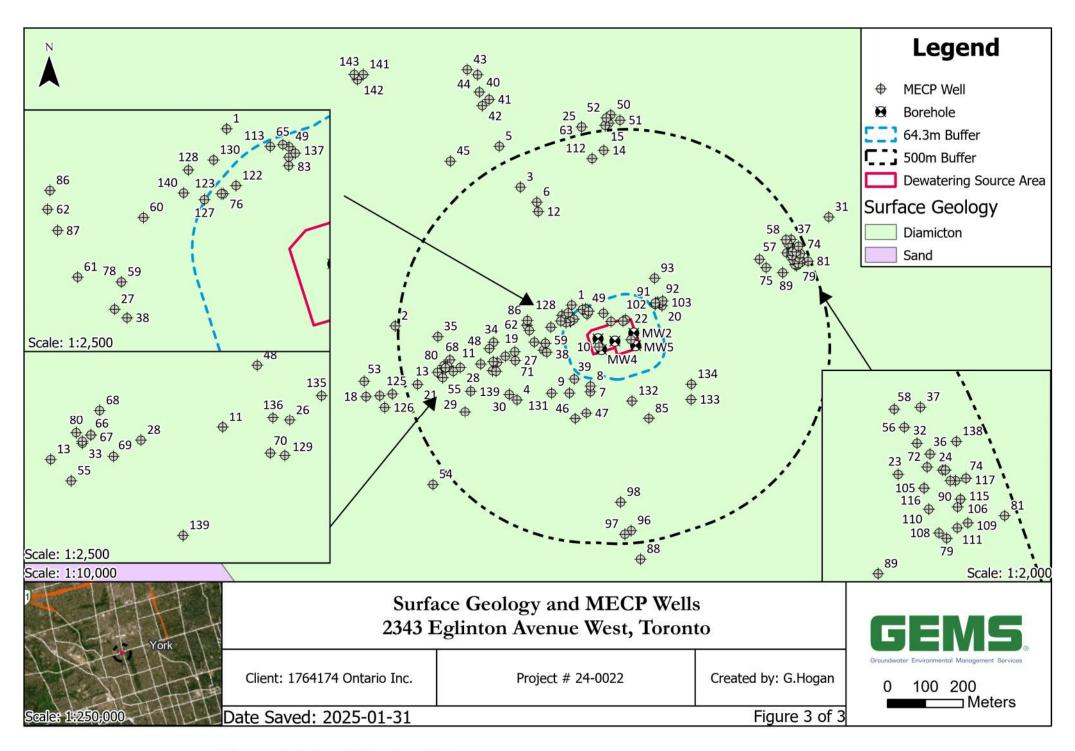
Dan Menard, REEO. POR, MBA

MICHAEL DAN MENARĎ PRACTISING MEMBER . 0649 .

President

Figure 1

Regional Location Plan


Figure 2

Detailed Site Plan

Figure 3

Surface Geology and MECP Wells

Appendix A

Architectural Drawings

PROPOSED DEVELOPMENT

2343 Eglinton Ave. W, Toronto, ON

Project: 22029
Date: 2024-08-07
Issued for: Coordination

	ARCHITECTURAL DRAWING LIST					
SHEET NUMBER	SHEET NAME					
A000	COVER / DRAWING LIST					
A001	CONTEXT PLAN & PROJECT STATS					
A003	MASSING VIEWS					
A100	SITE PLAN					
A101	P2 PARKING PLAN					
A102	P1 PARKING PLAN					
A201	1ST FLOOR PLAN					
A202	2ND FLOOR PLAN					
A203	3RD-6TH FLOOR PLAN					
A207	7TH FLOOR PLAN					
A208	8TH-12TH FLOOR PLAN					
A213	13TH FLOOR PLAN					
A243	14TH-43RD FLOOR PLAN					
A244	MECH PH FLOOR PLAN					
A401	BUILDING ELEVATION - NORTH & SOUTH					
A402	BUILDING ELEVATION - EAST & WEST					
A501	BUILDING SECTION					
A502	BUILDING SECTION					

PROJECT CONSULTANTS

ARCHITECT

RAW DESIGN INC.
317 ADELAIDE STREET WEST, SUITE 405
TORONTO, ON, M5V 1P9

T: 416 599 9729 F: 416 599 7729 E: RRC@RAWDESIGN.CA W: WWW.RAWDESIGN.CA

PLANNING

BOUSFIELDS INC.
3 CHURCH STREET, SUITE 200
TORONTO ON, M5E 1M2

T: 416-947-9744

MECHANICAL & ELECTRICAL ENGINEER
TBD

ENERGY MODEL
TBD

CIVIL ENGINEER

COUNTERPOINT ENGINEERING
8395 JANE STREET, SUITE 100,

VAUGHAN ON, L4K 5Y2

ACOUSTICS TBD

LANDSCAPE ARCHITECT
STUDIO TLA
20 CHAMPLAIN BLVD,

HERITAGE TBD

SURVEY

KRCMAR SURVEYORS LTD.

1137 CENTRE ST.

THORNHILL, ON, L4J 3M6

NORTH YORK, ON M3H 2Z1

GEOTECHNICAL ENGINEER

T: (905) 738-0053 E: INFO@KRCMAR.COM W: WWW.KRCMAR.COM

> WIND TBD

TRAFFIC CONSULTANT

BA CONSULTING GROUP LTD.

95 ST. CLAIR AVENUE WEST, SUITE 1000 TORONTO, ON T: 416 961 7110

STRUCTURAL ENGINEER

405-317 ADELAIDE STREET WEST TORONTO CANADA M5V 1P9 +1 416 599 9729

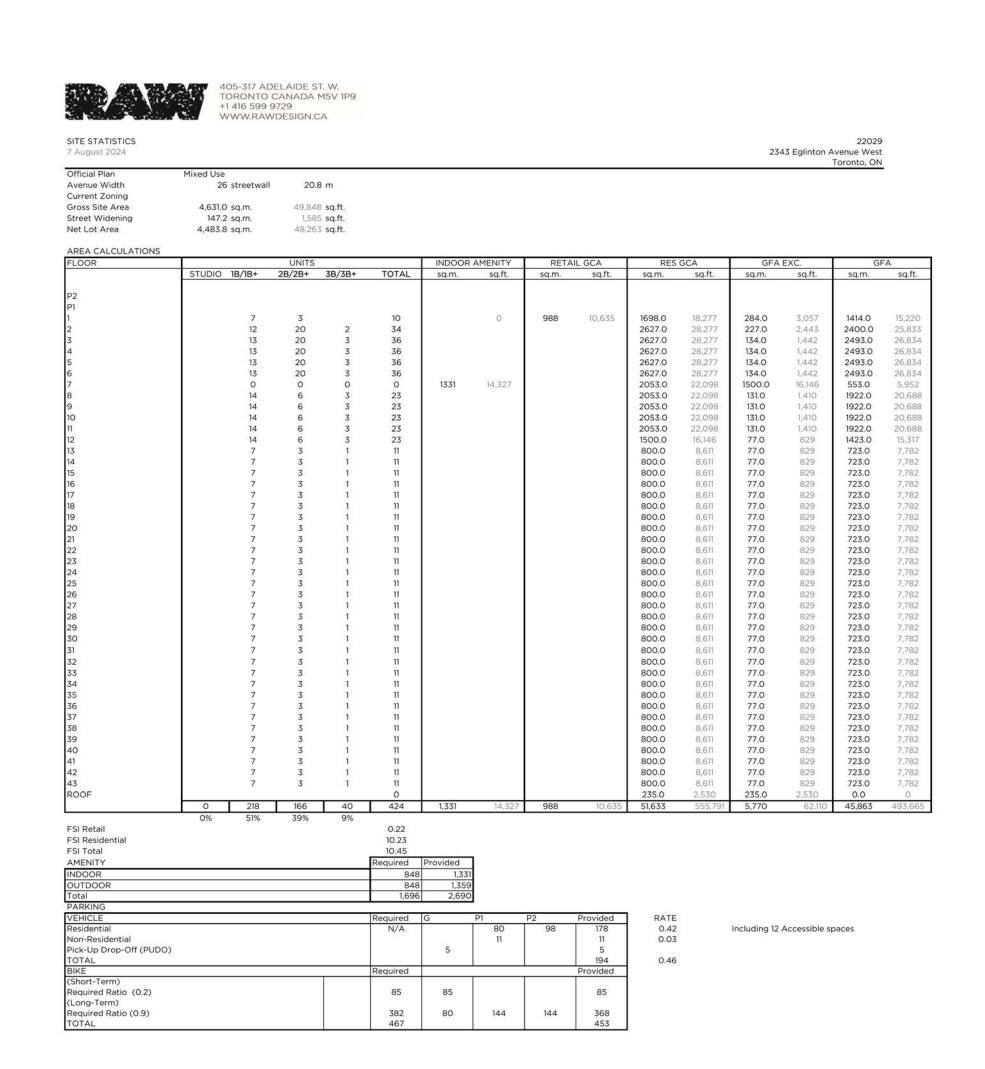
ISSUED RECORD

REVISION RECORD

www.rawdesign.ca

22029

PROPOSED

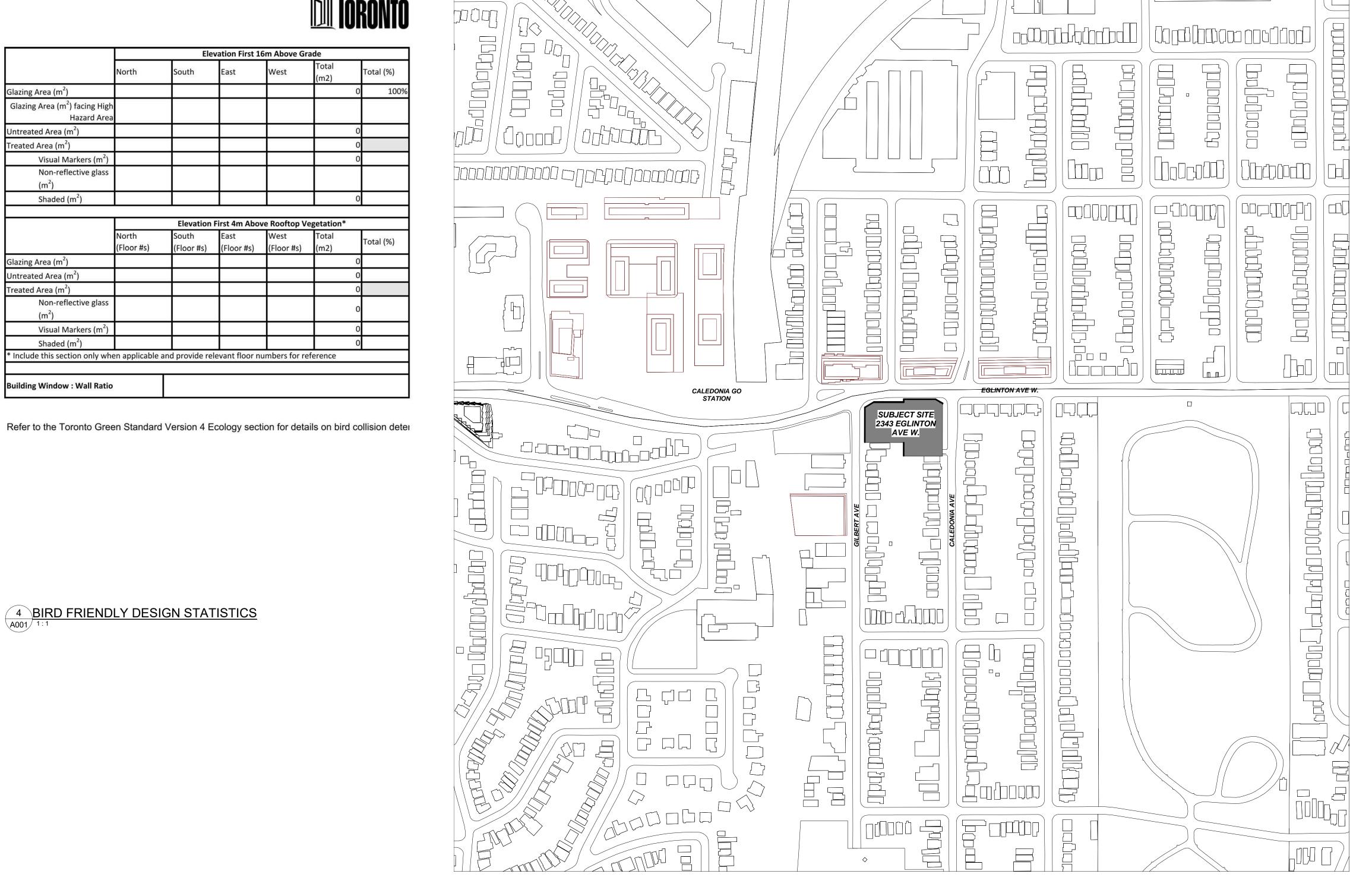

2343 Eglinton Ave. W, Toronto, ON

DEVELOPMENT

COVER / DRAWING

– SCALE:

-A000



Green Roof Statistics The Green Roof Statistics Template is required to be submitted for Site Plan Control Applications where a green roof is required under the Toronto Municipal Code Chapter 492, Green Roofs. Complete the table below and **copy it directly onto the Roof Plan** submitted as part of any Site Plan Control Application requiring a green roof in accordance with the Bylaw. Refer to Section § 492-1 of the Municipal Code for a complete list of defined terms, and greater clarity and certainty regarding the intent and application of the terms included in the template. The Toronto Municipal Code Chapter 492, Green Roofs can be found online at: http://www.toronto.ca/legdocs/municode/1184_492.pdf **Green Roof Statistics** Gross Floor Area, as defined in Green Roof Bylaw (m²) Total Roof Area (m²) Area of Residential Private Terraces (m²) Rooftop Outdoor Amenity Space, if in a Residential Building (m²) Area of Renewable Energy Devices (m²) Tower (s)Roof Area with floor plate less than 750 m² otal Available Roof Space (m²) Green Roof Coverage Coverage of Available Roof Space (m²) Coverage of Available Roof Space (%)

azing Area (m²) Glazing Area (m²) facing High Hazard Are Intreated Area (m²) reated Area (m²) Visual Markers (m²) Non-reflective glass Shaded (m²) Elevation First 4m Above Rooftop Vegetation* Blazing Area (m²) ntreated Area (m²) reated Area (m²) Non-reflective glass Visual Markers (m²) Shaded (m²) Include this section only when applicable and provide relevant floor numbers for reference Building Window: Wall Ratio

Bird-Friendly Design Statistics

3 GREEN ROOF STATISTICS 4 BIRD FRIENDLY DESIGN STATISTICS

1 CONTEXT PLAN A001 1 : 2500

² SITE STATISTICS

Statistics Template – Toronto Green Standard Version 4.0 Mid to High Rise Residential and all New Non-Residential Development

The Toronto Green Standard Version 4.0 Statistics Template is submitted with Site Plan Control Applications and stand-alone Zoning Bylaw Amendment applications. Complete the table and copy it directly onto the Site Plan submitted as part of the application.

For Zoning Bylaw Amendment applications: complete General Project Description and Section 1. For Site Plan Control applications: complete General Project Description, Section 1 and Section 2. For further information, please visit www.toronto.cg/greendevelopment

General Project Description	Proposed
Total Gross Floor Area	
Breakdown of project components (m²):	
Residential	
Retail	
Commercial	
Industrial	
Institutional/Other	
Total number of residential units	

Low Emissions Transportation	Required	Proposed	Proposed %
Number of Parking Spaces			
Number of EV Parking Spaces (Residential)			
Number of EV Parking Spaces (non-residential)			
Cycling Infrastructure	Required	Proposed	Proposed %
Number of long-term bicycle parking spaces (all-uses)			
Number of long-term bicycle parking located on:			
a) first storey of building			
b) second storey of building			
c) first level below-ground			
d) second level below-ground			
e) other levels below-ground			

Statistics Template – Toronto Green Standard Version 4.0 Mid to High Rise Residential and all New Non-Residential Development

Cycling Infrastructure	Required	Proposed	Proposed %
Number of short-term bicycle parking spaces			
Number of shower and change facilities (non-residential)			
Tree Canopy	Required	Proposed	Proposed %
	Required	Proposed	Proposed %
Tree Canopy Total Soil Volume (40% of the site area ÷ 66 m2 x 30 m³) Soil volume provided within the site area (m³)	Required	Proposed	Proposed %

Section 2: For Site Plan Control Applications

a) high-albedo surface material

b) open-grid pavement

c) shade from tree canopy

Cycling Infrastructure	Required	Proposed	Proposed %
Number of short-term bicycle parking spaces (all uses) at-grade or on first level below grade			
Number of publicly accessible bicycle parking spaces			
Number of energized outlets for electric bicycles			
Tree Canopy	Required	Proposed	Proposed %
Total site area (m²)			
Total Soil Volume (40% of the site area ÷ 66 m² x 30 m³)			
Total number of trees planted			
Number of surface parking spaces (if applicable)			
Number of shade trees located in surface parking area			
Landscaping & Biodiversity	Required	Proposed	Proposed %
Total non-roof hardscape area (m²)			
Total non-roof hardscape area treated for Urban Heat Island (minimum residential 75% or non-residential 50%) (m²)			
Area of non-roof hardscape treated with: (indicate m²)			
out N. H Coll C. (contribution for the control of the control of the collection)			

Page 2 of 3

Mid to High Rise Residential and all New Non-Residential Development ndscaping & Biodiversity Required Proposed Proposed d) shade from high-albedo structures e) shade from energy generation structures Percentage of Lot Area as Soft Landscaping (non-residential only) Total number of plants Total number of native plants and % of total plants Available Roof Space (m²) Available Roof Space provided as Green Roof (m²) Available Roof Space provided as Cool Roof (m²) Available Roof Space provided as Solar Panels (m²) Required Proposed Propose ird Collision Deterrence Total area of glazing of all elevations within 16m above grade Total area of treated glazing (minimum 85% of total area of glazing within 16m above grade) (m²) Percentage of glazing within 16m above grade treated with: a) Visual markers b) non-reflective glass c) Building integrated structures

Statistics Template – Toronto Green Standard Version 4.0

Page 3 of 3

THIS DRAWING IS THE PROPERTY OF THE ARCHITECT AND MAY NOT BE REPRODUCED OR USED WITHOUT THE EXPRESS CONSENT OF THE ARCHITECT. THE CONTRACTOR IS RESPONSIBLE FOR CHECKING AND VERIFYING ALL LEVELS AND DIMENSIONS AND SHALL REPORT ALL DISCREPANCIES TO THE ARCHITECT AND OBTAIN CLARIFICATION PRIOR TO COMMENCING WORK. DRAWING IS IN METRIC UNITS U.N.O. IF IMPERIAL DIMENSIONS ARE INDICATED, IT IS FOR CONVENIENCE ONLY. IF A ROUNDING DISCREPANCY EXISTS, THE METRIC MEASUREMENT SHALL GOVERN

ISSUED RECORD

REVISION RECORD

405-317 ADELAIDE STREET WEST TORONTO CANADA M5V 1P9 +1 416 599 9729 WWW.RAWDESIGN.CA

22029 2343 Eglinton Ave. W,

Toronto, ON

PROPOSED DEVELOPMENT

CONTEXT PLAN & PROJECT STATS

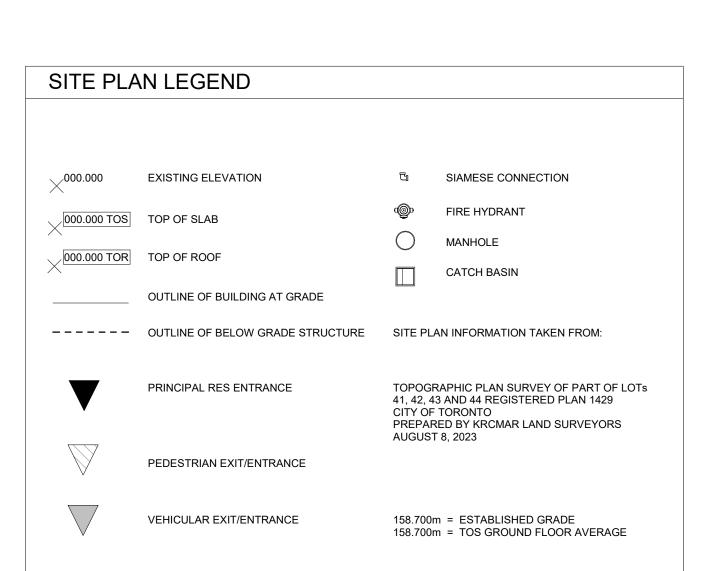
SCALE: As indicated

5 TORONTO GREEN STANDARDS STATTISTICS TEMPLATE

THIS DRAWING IS THE PROPERTY OF THE ARCHITECT AND MAY NOT BE REPRODUCED OR USED WITHOUT THE EXPRESS CONSENT OF THE ARCHITECT. THE CONTRACTOR IS RESPONSIBLE FOR CHECKING AND VERIFYING ALL LEVELS AND DIMENSIONS AND SHALL REPORT ALL DISCREPANCIES TO THE ARCHITECT AND OBTAIN CLARIFICATION PRIOR TO COMMENCING WORK. DRAWING IS IN METRIC UNITS U.N.O. IF IMPERIAL DIMENSIONS ARE INDICATED, IT IS FOR CONVENIENCE ONLY. IF A ROUNDING DISCREPANCY EXISTS, THE METRIC MEASUREMENT SHALL GOVERN

REVISION RECORD

405-317 ADELAIDE STREET WEST TORONTO CANADA M5V 1P9 +1 416 599 9729 WWW.RAWDESIGN.CA

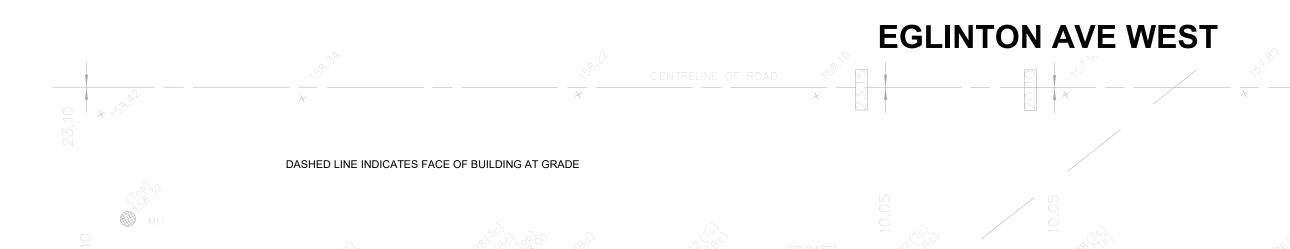

- 22029

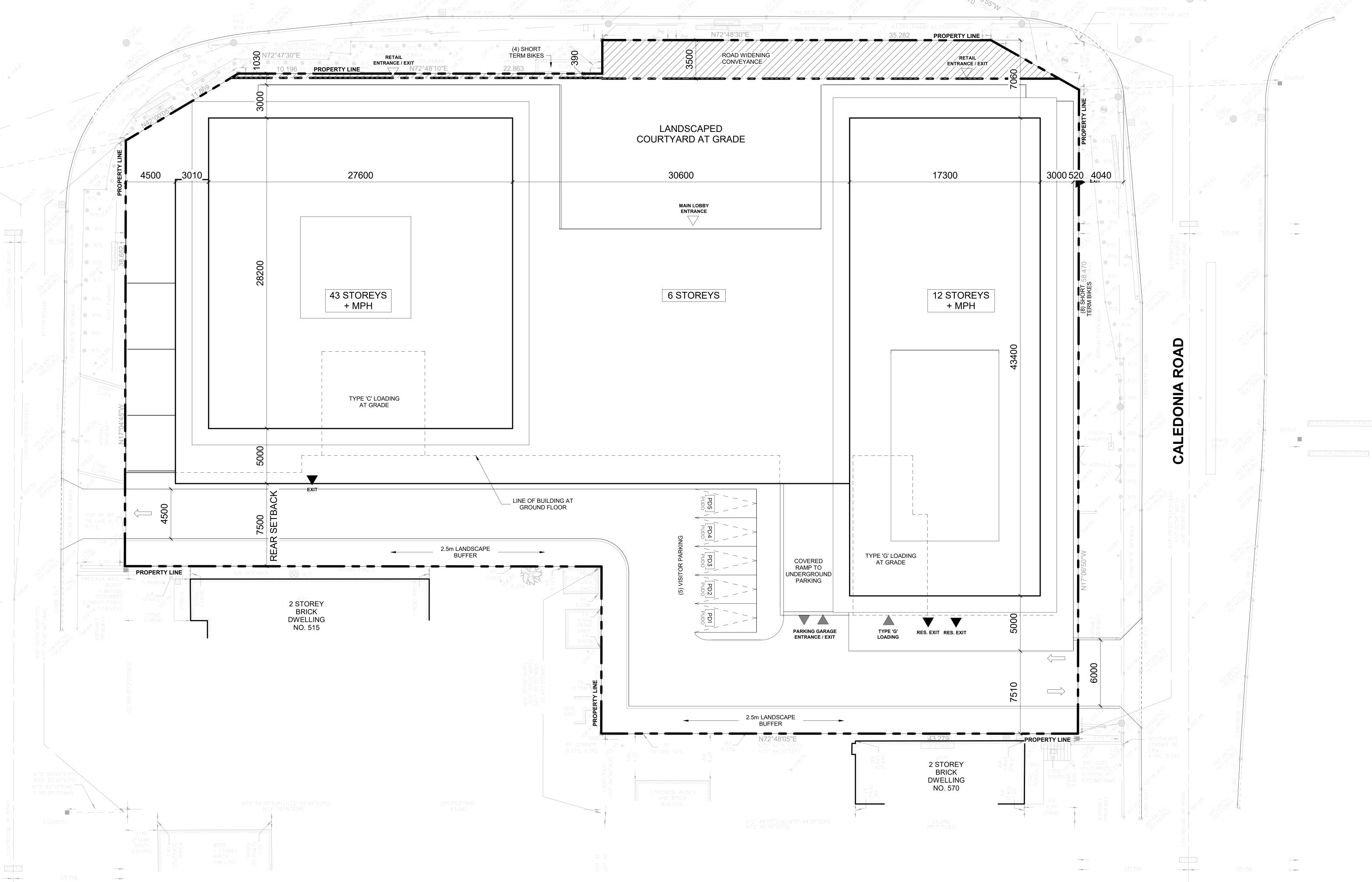
2343 Eglinton Ave. W, Toronto, ON

PROPOSED DEVELOPMENT

MASSING VIEWS

A003




SITE PLAN NOTES

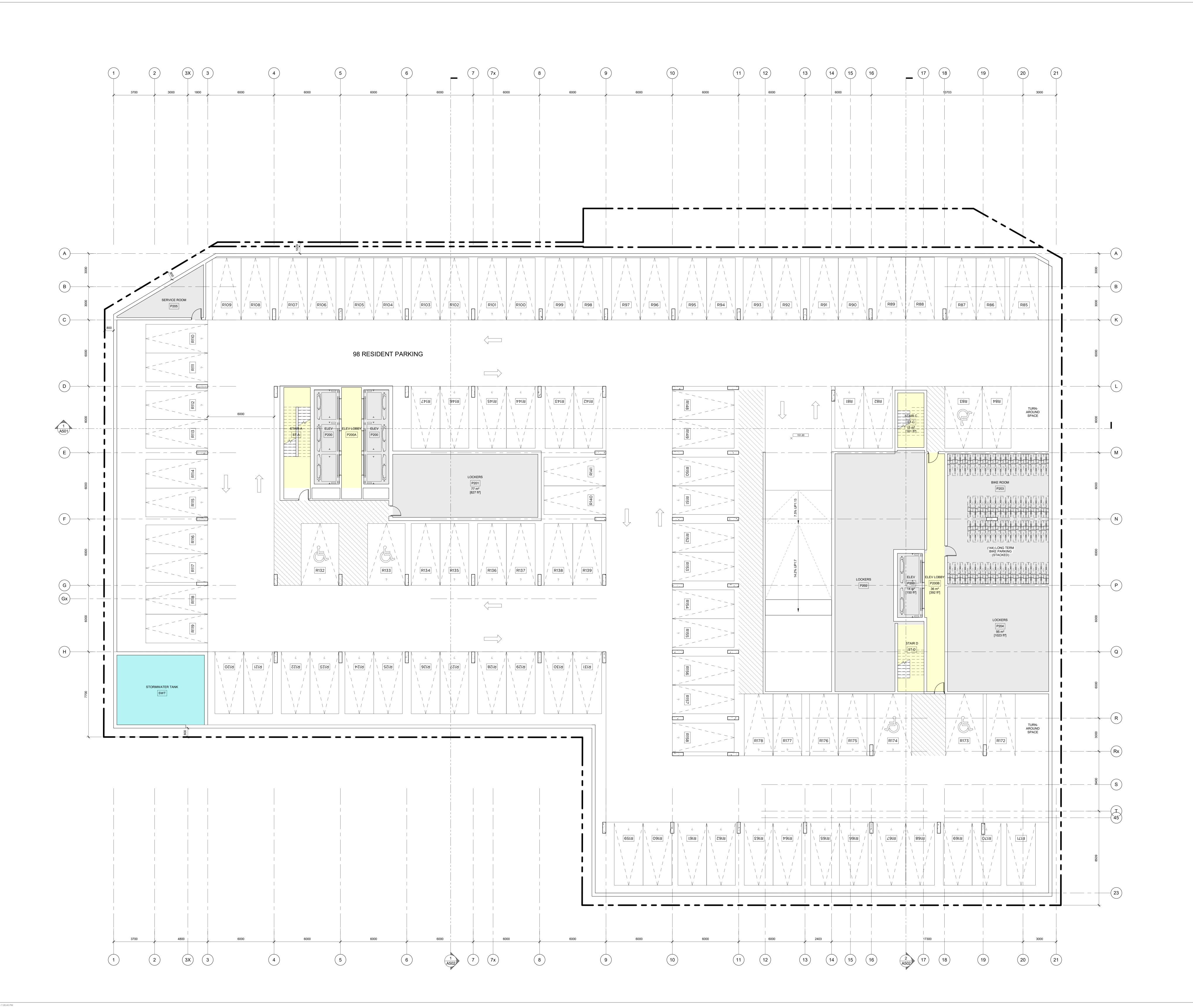
- 1. THE BUILDING IS TO BE SPRINKLERED.
- TORONTO HYDRO STREET LIGHTING AND TYPE TO BE COORDINATED WITH AND APPROVED BY TORONTO HYDRO.

EXECUTIVE DIRECTOR OF TECHNICAL SERVICES ARE TO BE REINSTATED.

- 3. ALL WASTE GENERATED BY THE SITE TO BE STORED ON PRIVATE PROPERTY. 4. SIDEWALKS AND BOULEVARDS WITHIN THE RIGHT OF WAY TO HAVE A MINIMUM 2% AND MAXIMUM 4% SLOPE TOWARDS THE ROADWAY.
- 5. REFER TO SITE SERVICING PLAN, PREPARED BY XXX, FOR SEWER AND WATER SERVICE INFORMATION. 6. ALL EXISTING ACCESSES, CURB CUTS, TRAFFIC CONTROL SIGNS, ETC. ALONG THE DEVELOPMENT SITE FRONTAGES THAT ARE NO LONGER REQUIRED ARE TO BE REMOVED. THE BOULEVARD WITHIN THE PUBLIC RIGHT OF WAY, IN ACCORDANCE WITH CITY STANDARDS AND TO THE SATISFACTION OF THE
- 7. TYPICAL PARKING SPACES ARE 2.6m X 5.6m. SPACES WITH ADJACENT OBSTRUCTIONS OF A DEPTH GREATER THAN 1m TO HAVE A TYPICAL ALLOWANCE OF 0.3m FROM PARKING SPACE.
- 8. ALL SMALL CAR PARKING SPACES TO BE CLEARLY SIGNED AT THE FRONT OF EACH SPACE AS "SMALL CAR ONLY"
- EXTERIOR LIGHTING WILL BE FULL CUT-OFF FIXTURES (OR DARK SKY COMPLIANT) SO THAT NO UP-LIGHTING WILL BE PRODUCED FROM THESE LIGHTS AND EXTERIOR LIGHT FIXTURES ARE SHIELDED TO PREVENT GLARE AND LIGHT TRESPASS ONTO ANY NEIGHBORING PROPERTIES
- 10. SHORT-TERM BIKE PARKING: MIN. LENGTH 1.8m, MIN. WIDTH 0.6m, MIN. VERTICAL CLEARANCE 1.9m

THIS DRAWING IS THE PROPERTY OF THE ARCHITECT AND MAY NOT BE REPRODUCED OR USED WITHOUT THE EXPRESS CONSENT OF THE ARCHITECT. THE CONTRACTOR IS RESPONSIBLE FOR CHECKING AND VERIFYING ALL LEVELS AND DIMENSIONS AND SHALL REPORT ALL DISCREPANCIES TO THE ARCHITECT AND OBTAIN CLARIFICATION PRIOR TO COMMENCING WORK. DRAWING IS IN METRIC UNITS U.N.O. IF IMPERIAL DIMENSIONS ARE INDICATED, IT IS FOR CONVENIENCE ONLY. IF A ROUNDING DISCREPANCY EXISTS, THE METRIC MEASUREMENT SHALL GOVERN ISSUED RECORD

REVISION RECORD


405-317 ADELAIDE STREET WEST TORONTO CANADA M5V 1P9 +1 416 599 9729 WWW.RAWDESIGN.CA

2343 Eglinton Ave. W, Toronto, ON

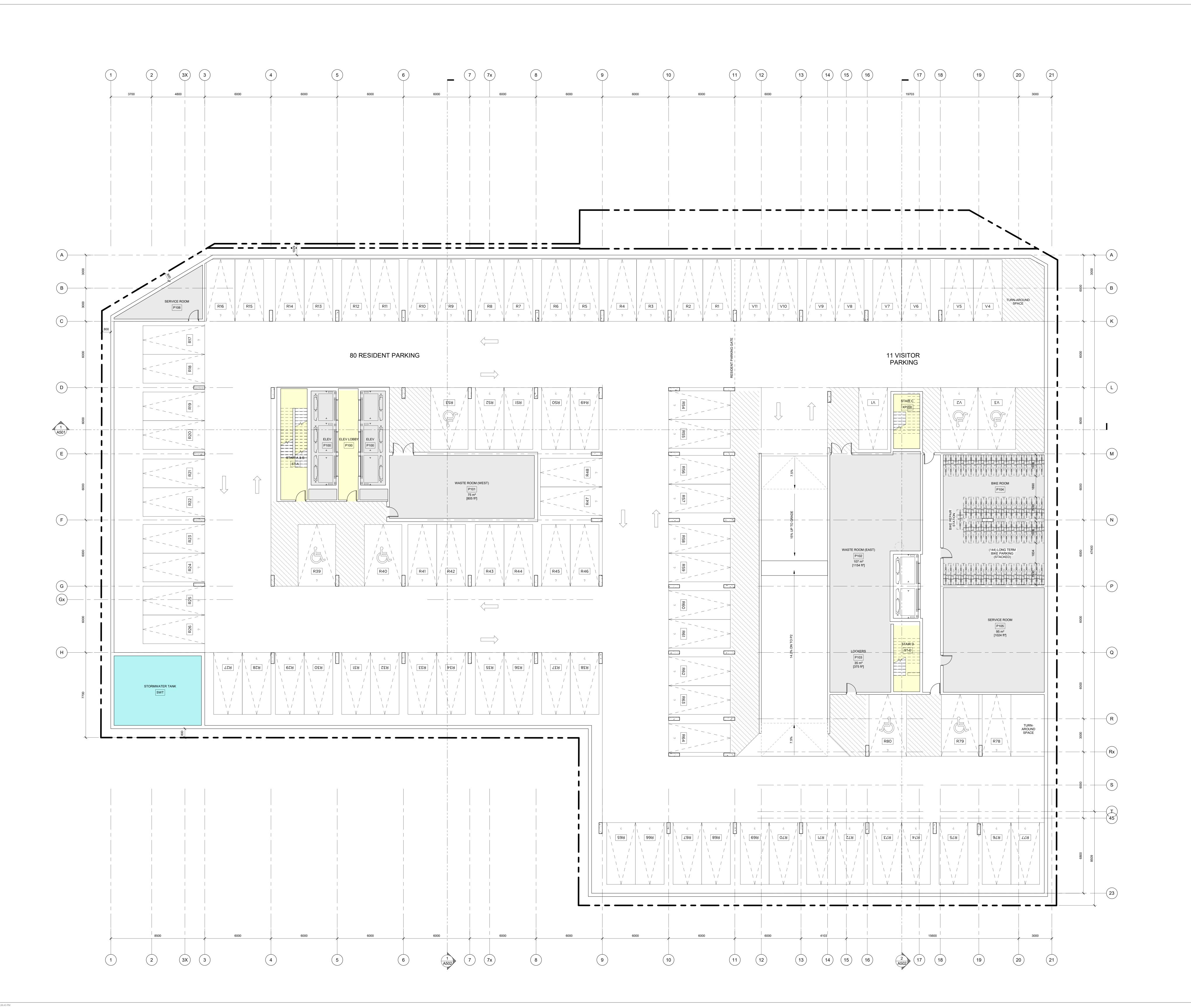
PROPOSED DEVELOPMENT

SITE PLAN

REVISION RECORD

NOF

405-317 ADELAIDE STREET WEST TORONTO CANADA M5V 1P9 +1 416 599 9729 WWW.RAWDESIGN.CA


22029 -

2343 Eglinton Ave. W, Toronto, ON

PROPOSED DEVELOPMENT

P2 PARKING PLAN

SCALE: 1:100 -A101

REVISION RECORD

NORTH

405-317 ADELAIDE STREET WEST TORONTO CANADA M5V 1P9 +1 416 599 9729 WWW.RAWDESIGN.CA

_ 22029 _

2343 Eglinton Ave. W, Toronto, ON

PROPOSED DEVELOPMENT

P1 PARKING PLAN

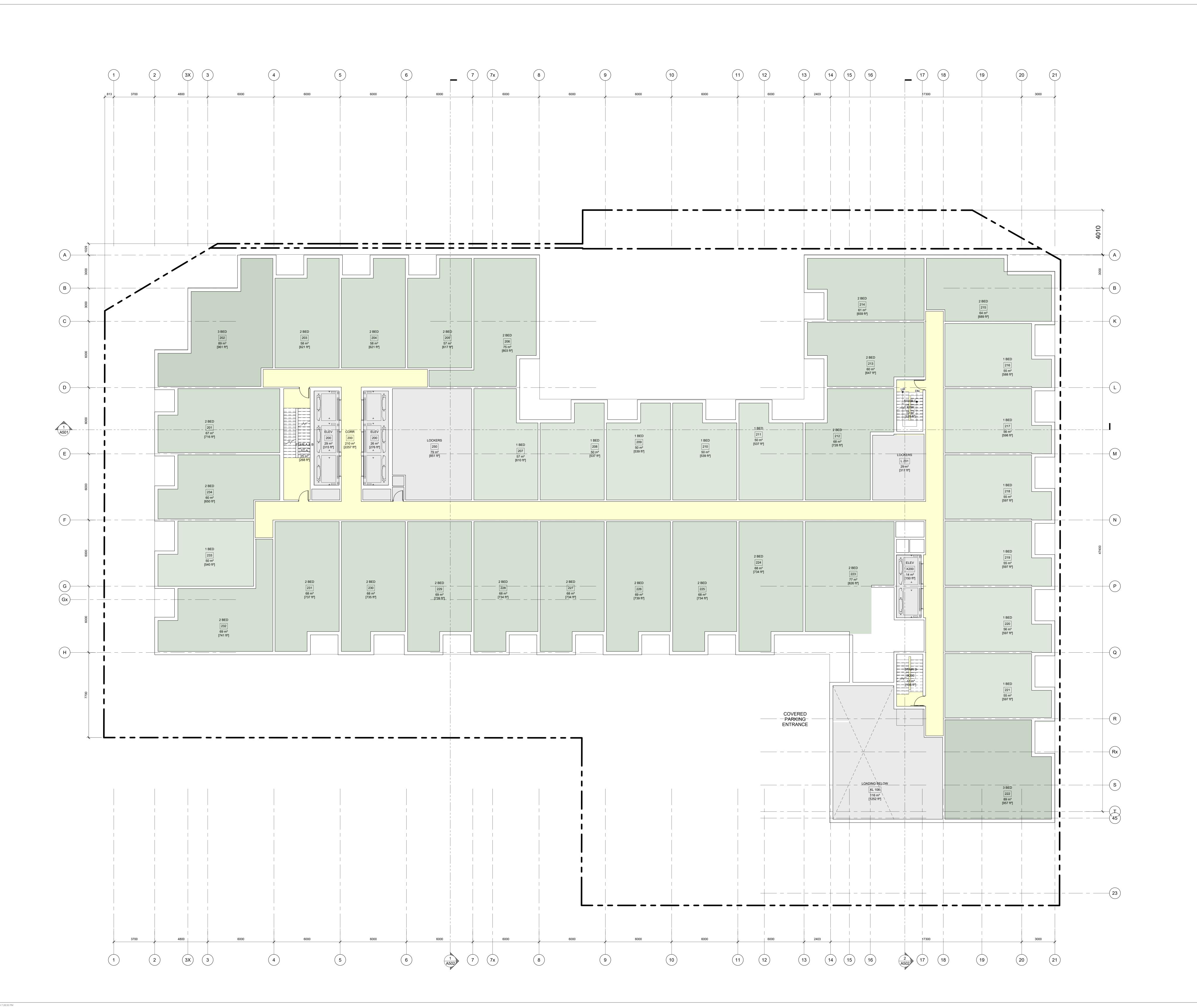
SCALE: 1:100 -A102

REVISION RECORD

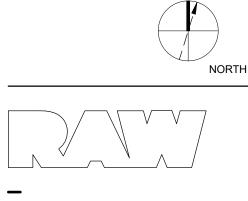
NORT

405-317 ADELAIDE STREET WEST TORONTO CANADA M5V 1P9 +1 416 599 9729

029


WWW.RAWDESIGN.CA

– 2343 Eglinton Ave. W, Toronto, ON

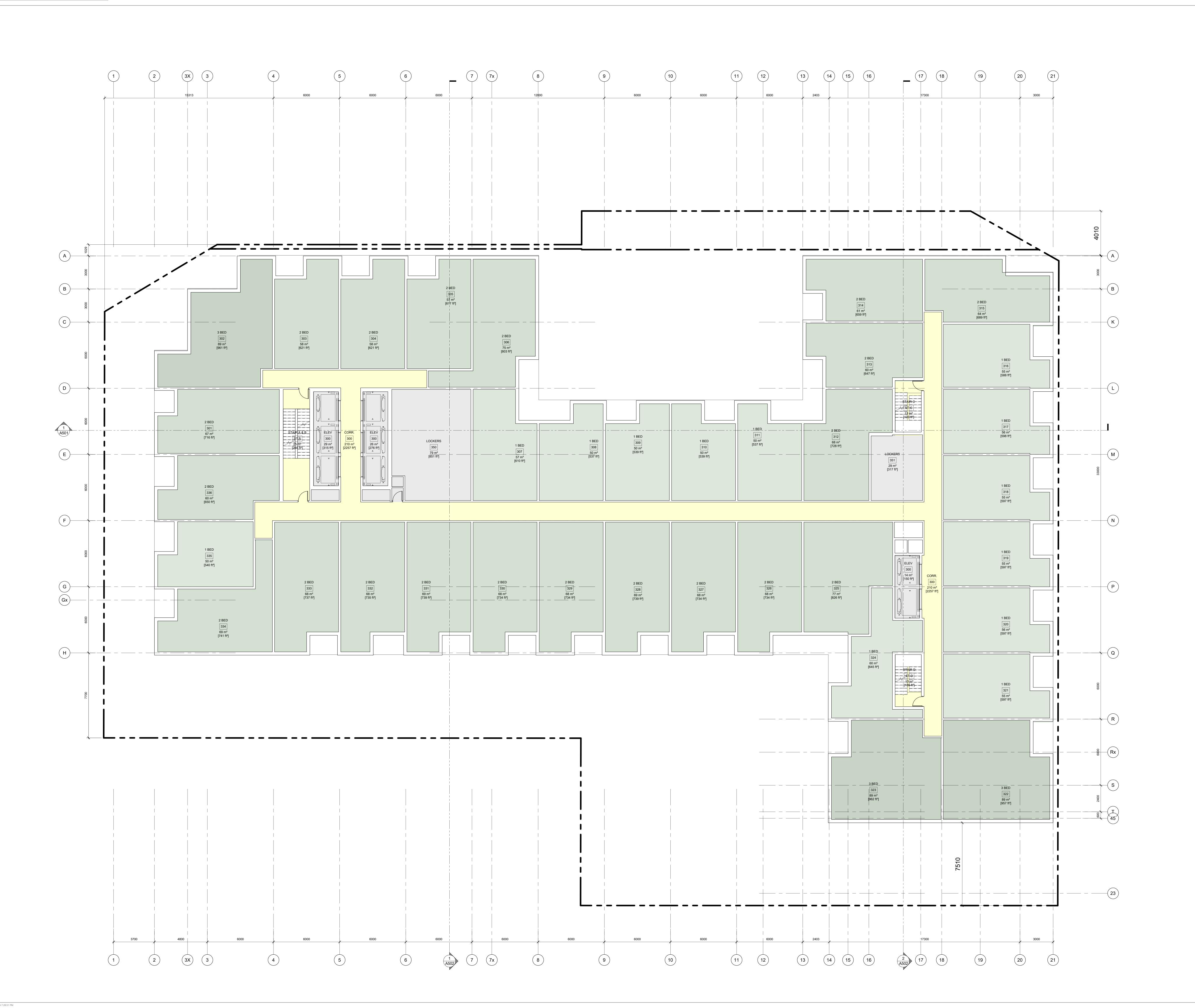

PROPOSED DEVELOPMENT

1ST FLOOR PLAN

A201

REVISION RECORD

405-317 ADELAIDE STREET WEST TORONTO CANADA M5V 1P9 +1 416 599 9729 WWW.RAWDESIGN.CA


22029

2343 Eglinton Ave. W,
Toronto, ON

PROPOSED DEVELOPMENT

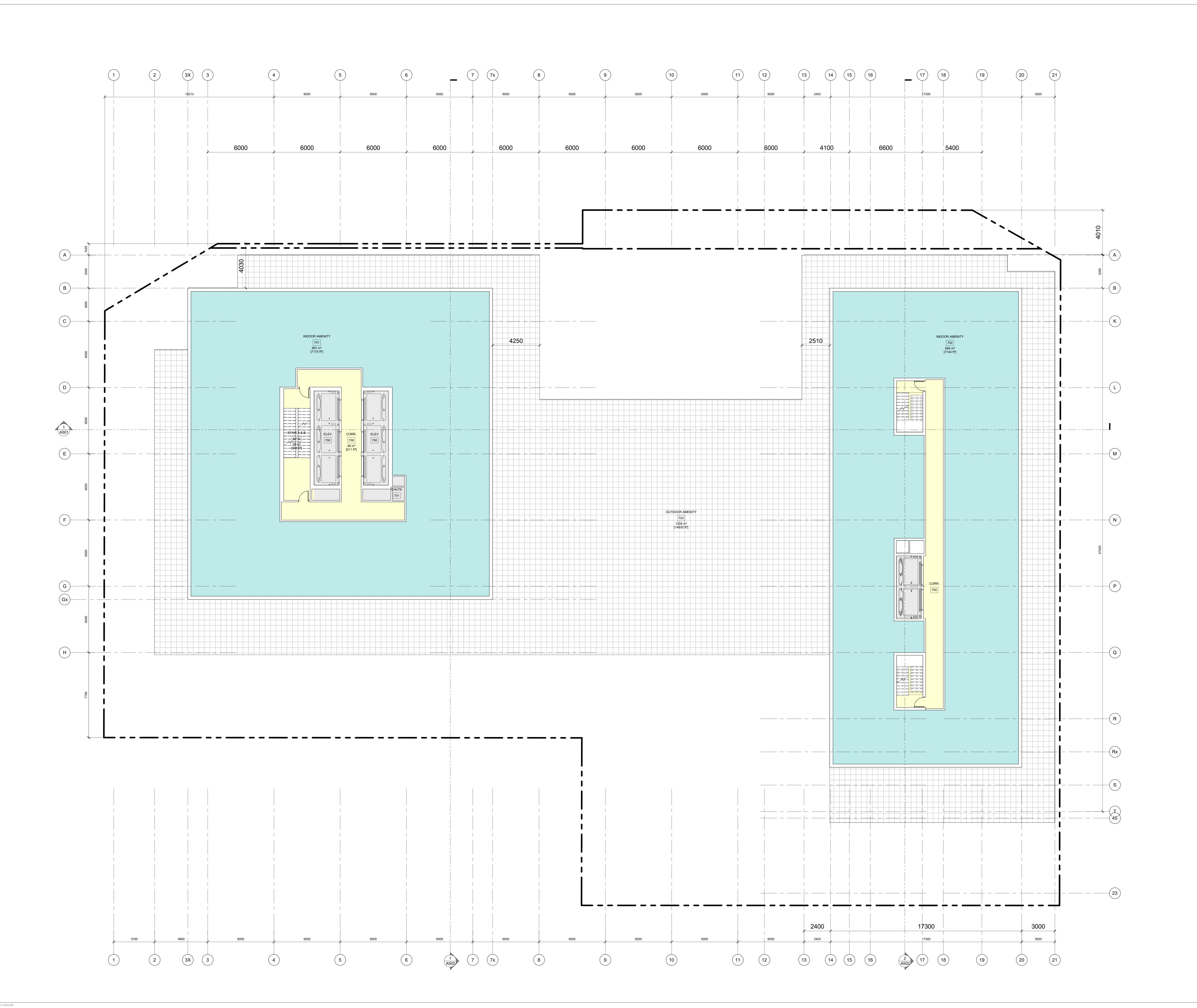
2ND FLOOR PLAN

SCALE: 1:100

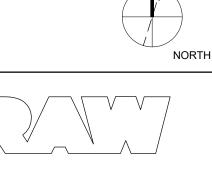
REVISION RECORD

NORTH

405-317 ADELAIDE STREET WEST TORONTO CANADA M5V 1P9 +1 416 599 9729 WWW.RAWDESIGN.CA


22029 -

2343 Eglinton Ave. W, Toronto, ON


PROPOSED DEVELOPMENT

3RD-6TH FLOOR PLAN

SCALE: 1:100 -A203

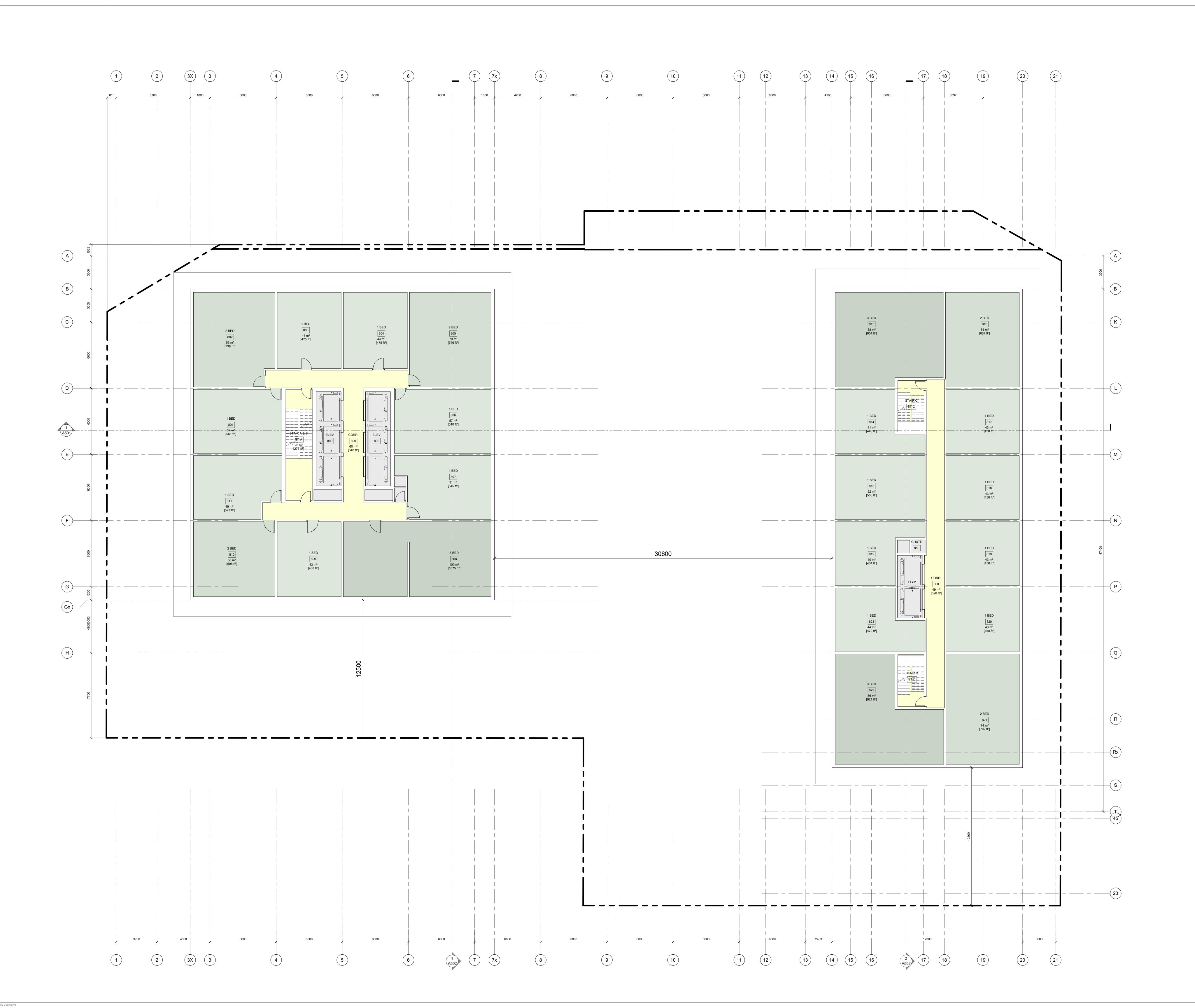
REVISION RECORD

405-317 ADELAIDE STREET WEST TORONTO CANADA M5V 1P9 +1 416 599 9729 WWW.RAWDESIGN.CA

– 22029 – 2343 Eglinton Ave. W,

Toronto, ON

PROPOSED


DEVELOPMENT

7TH FLOOR PLAN

_

SCALE: 1:100

A207

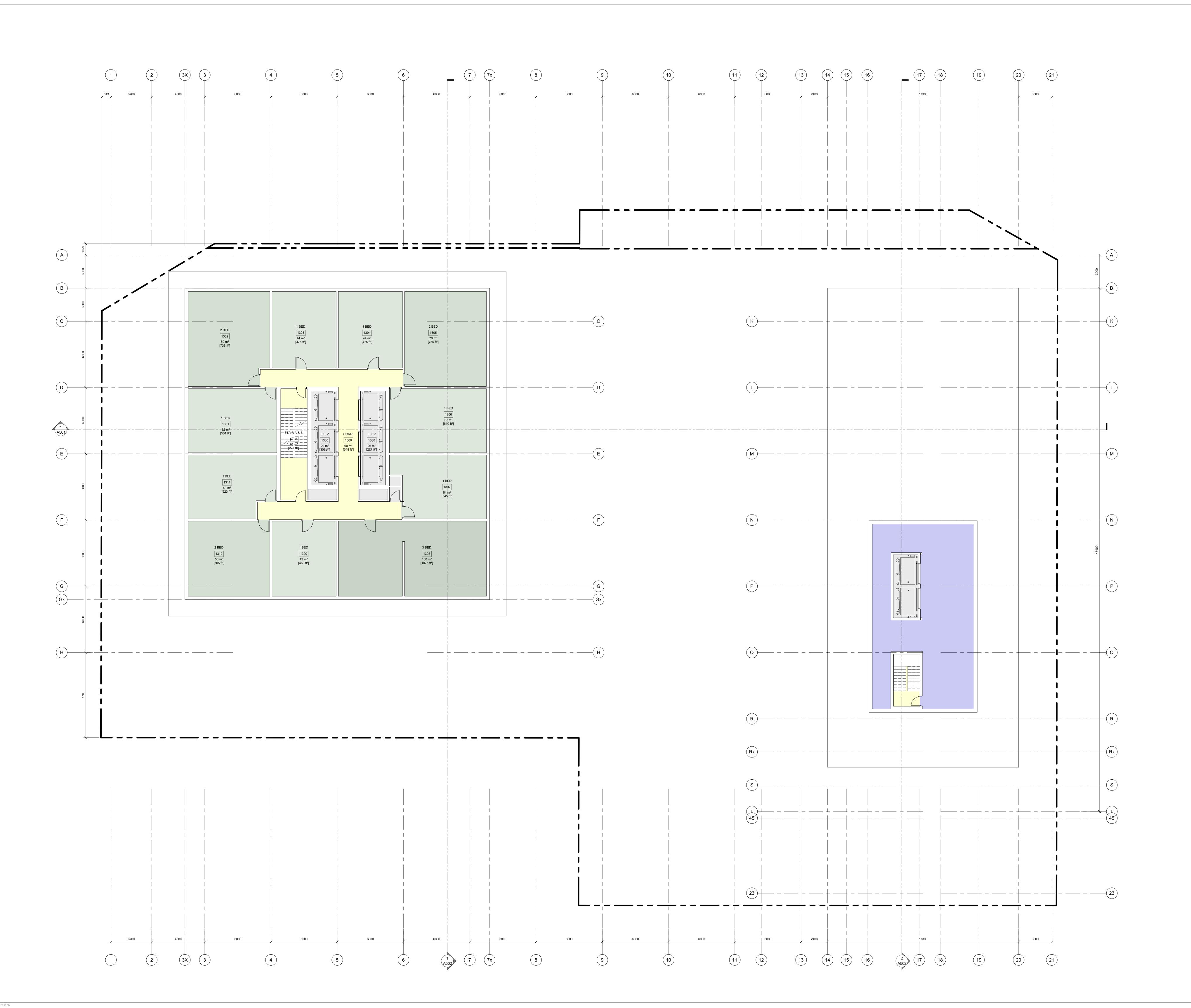
REVISION RECORD

NORTH

405-317 ADELAIDE STREET WEST TORONTO CANADA M5V 1P9 +1 416 599 9729 WWW.RAWDESIGN.CA

22029

2343 Eglinton Ave. W,
Toronto, ON


– PROPOSED DEVELOPMENT

– 8TH-12TH FLOOR

SCALE: 1:100

A208

PLAN

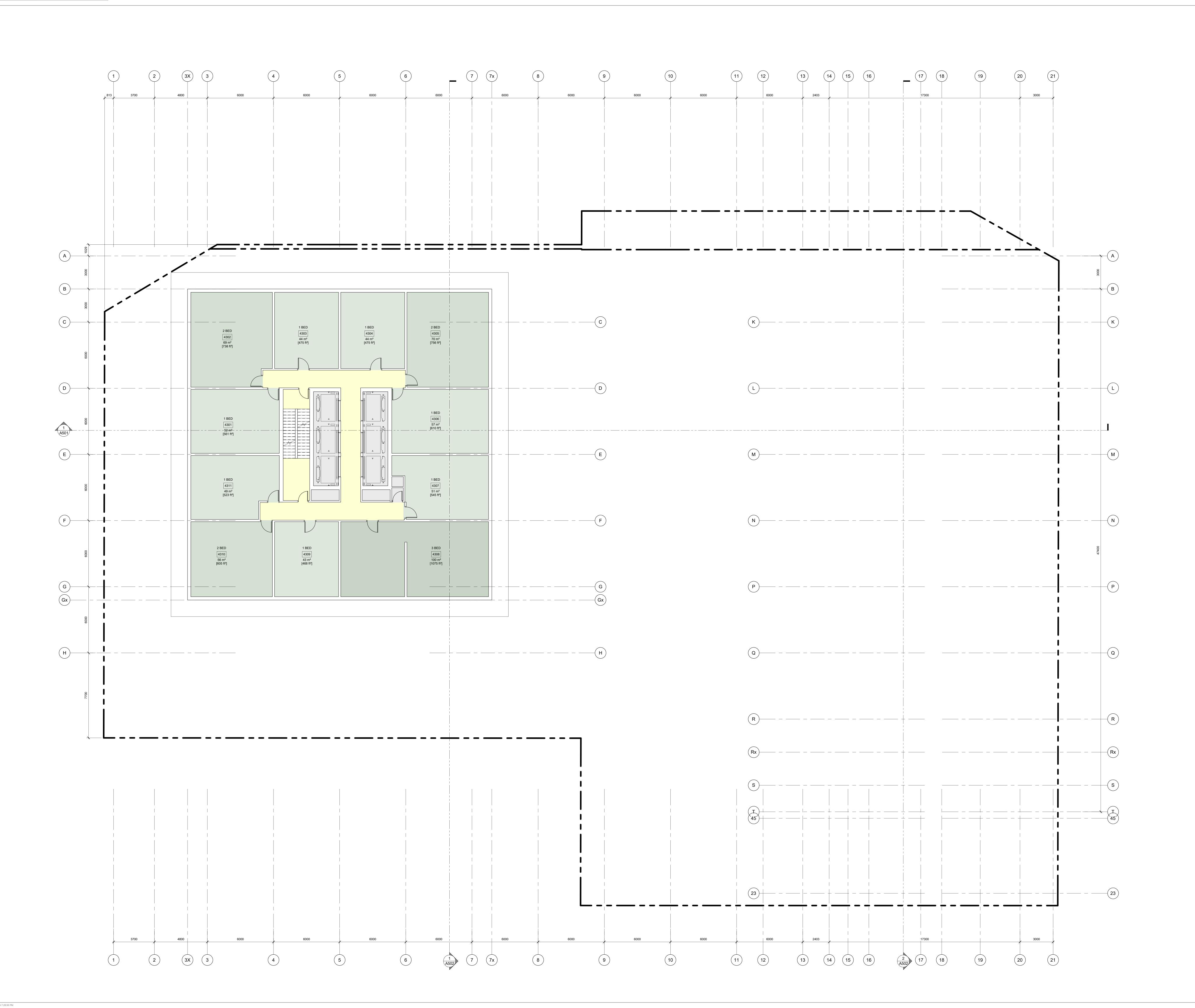
NOT FOR CONSTRUCTION

THIS DRAWING IS THE PROPERTY OF THE ARCHITECT AND MAY NOT BE REPRODUCED OR USED WITHOUT THE EXPRESS CONSENT OF THE ARCHITECT. THE CONTRACTOR IS RESPONSIBLE FOR CHECKING AND VERIFYING ALL LEVELS AND DIMENSIONS AND SHALL REPORT ALL DISCREPANCIES TO THE ARCHITECT AND OBTAIN CLARIFICATION PRIOR TO COMMENCING WORK. DRAWING IS IN METRIC UNITS U.N.O. IF IMPERIAL DIMENSIONS ARE INDICATED, IT IS FOR CONVENIENCE ONLY. IF A ROUNDING DISCREPANCY EXISTS, THE METRIC MEASUREMENT SHALL GOVERN

REVISION RECORD

NORTH

405-317 ADELAIDE STREET WEST TORONTO CANADA M5V 1P9 +1 416 599 9729 WWW.RAWDESIGN.CA


-22029 -2343 Eglipton Ave

2343 Eglinton Ave. W, Toronto, ON

PROPOSED DEVELOPMENT

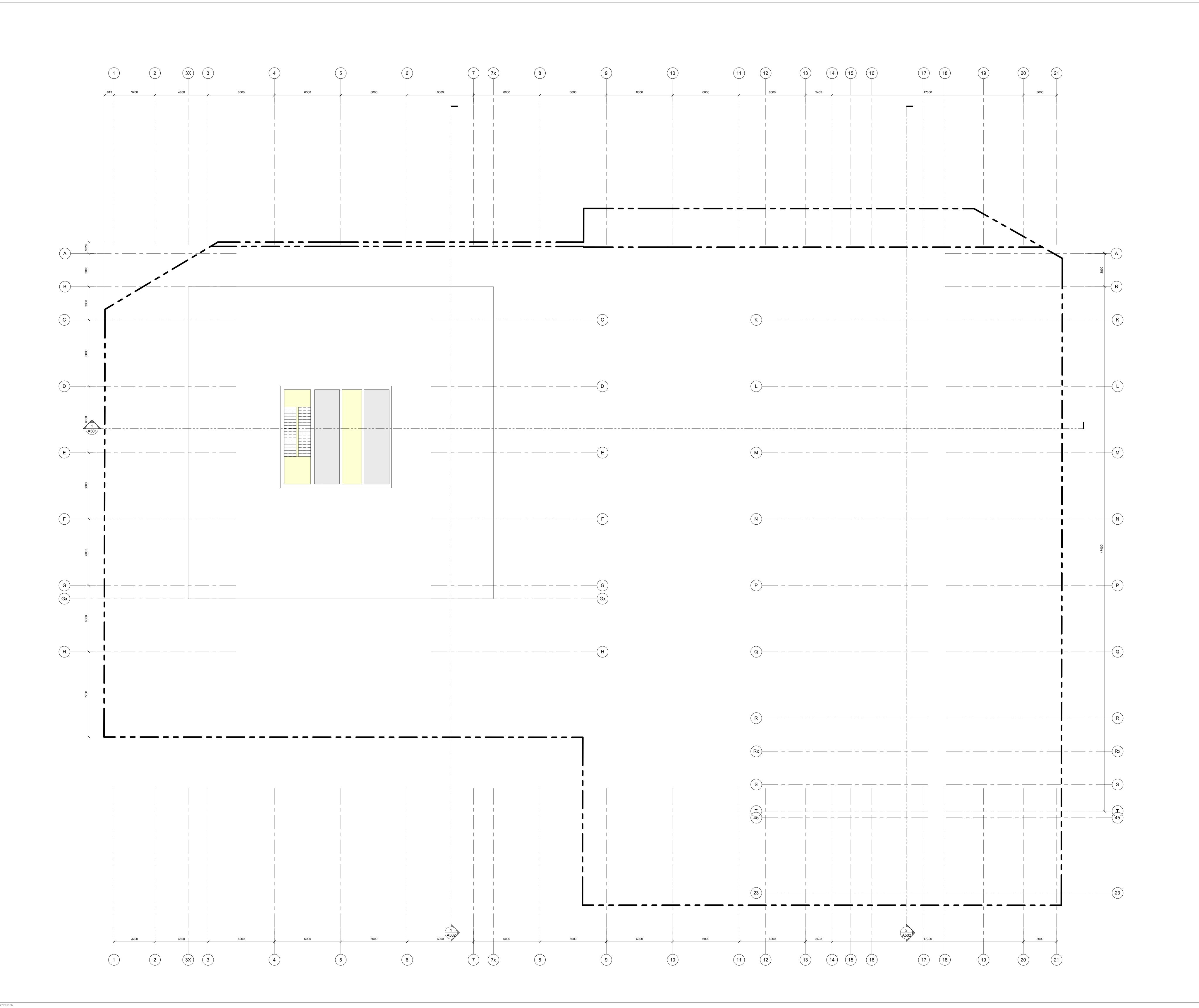
13TH FLOOR PLAN

SCALE: 1:100

REVISION RECORD

NORTH

405-317 ADELAIDE STREET WEST TORONTO CANADA M5V 1P9 +1 416 599 9729 WWW.RAWDESIGN.CA


_ 22029 _

2343 Eglinton Ave. W, Toronto, ON

PROPOSED DEVELOPMENT

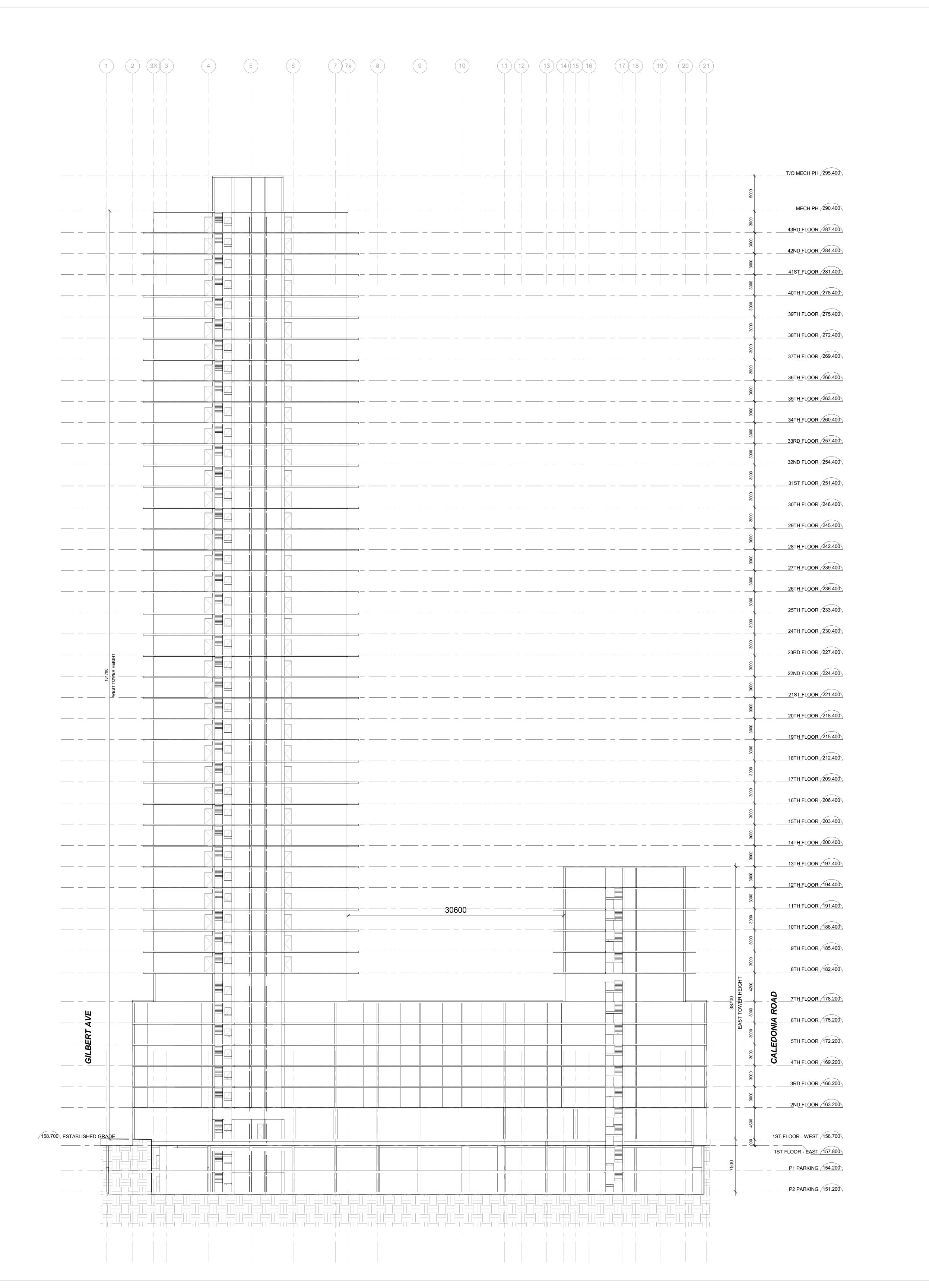
14TH-43RD FLOOR PLAN

SCALE: 1:100

REVISION RECORD

NOR

405-317 ADELAIDE STREET WEST TORONTO CANADA M5V 1P9 +1 416 599 9729 WWW.RAWDESIGN.CA


22029 – 2343 Eglinton Ave

2343 Eglinton Ave. W, Toronto, ON

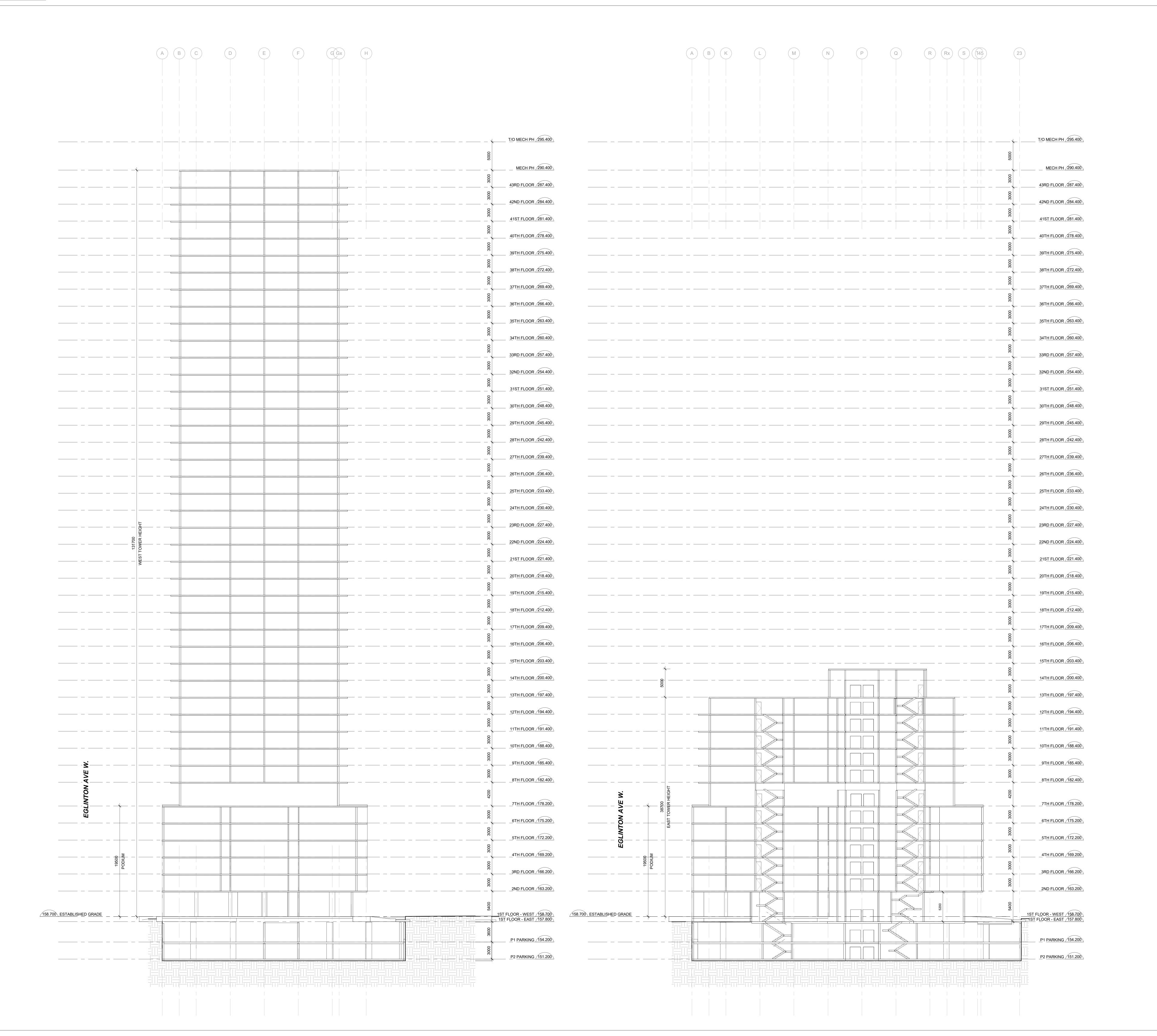
PROPOSED DEVELOPMENT

MECH PH FLOOR PLAN

SCALE: 1:100
-**Δ24**

REVISION RECORD

405-317 ADELAIDE STREET WEST TORONTO CANADA M5V 1P9 +1 416 599 9729 WWW.RAWDESIGN.CA


2343 Eglinton Ave. W, Toronto, ON

PROPOSED DEVELOPMENT

BUILDING SECTION

SCALE: 1:200 -

A501

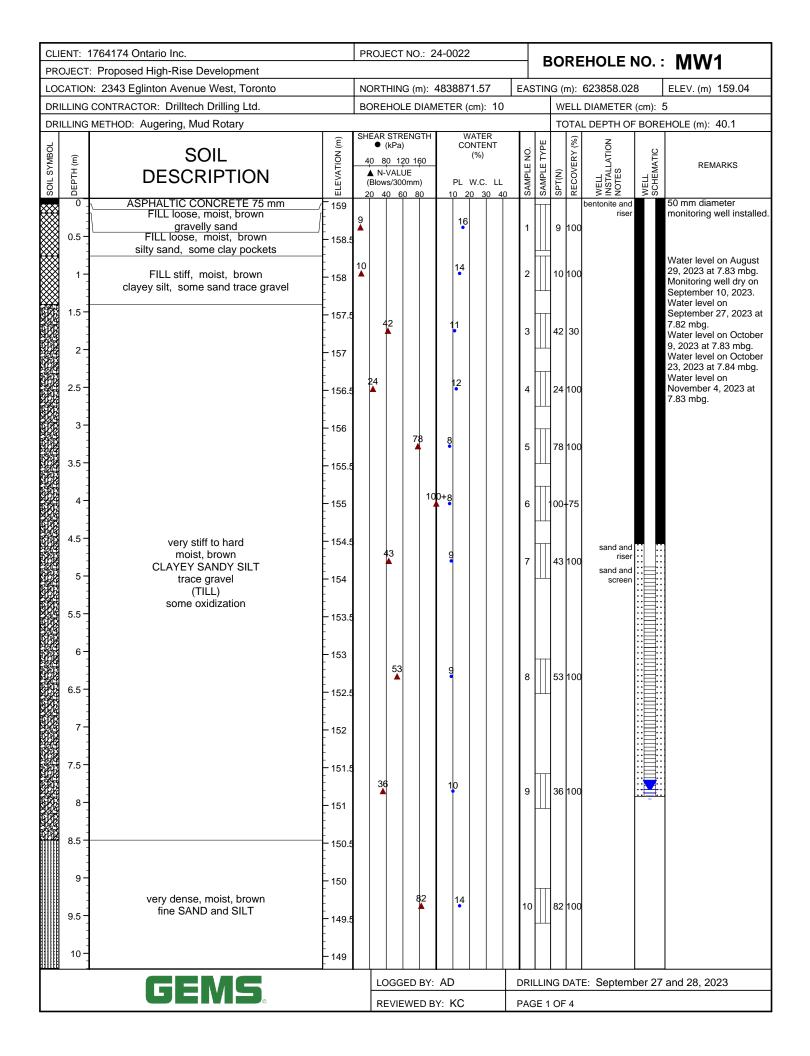
REVISION RECORD

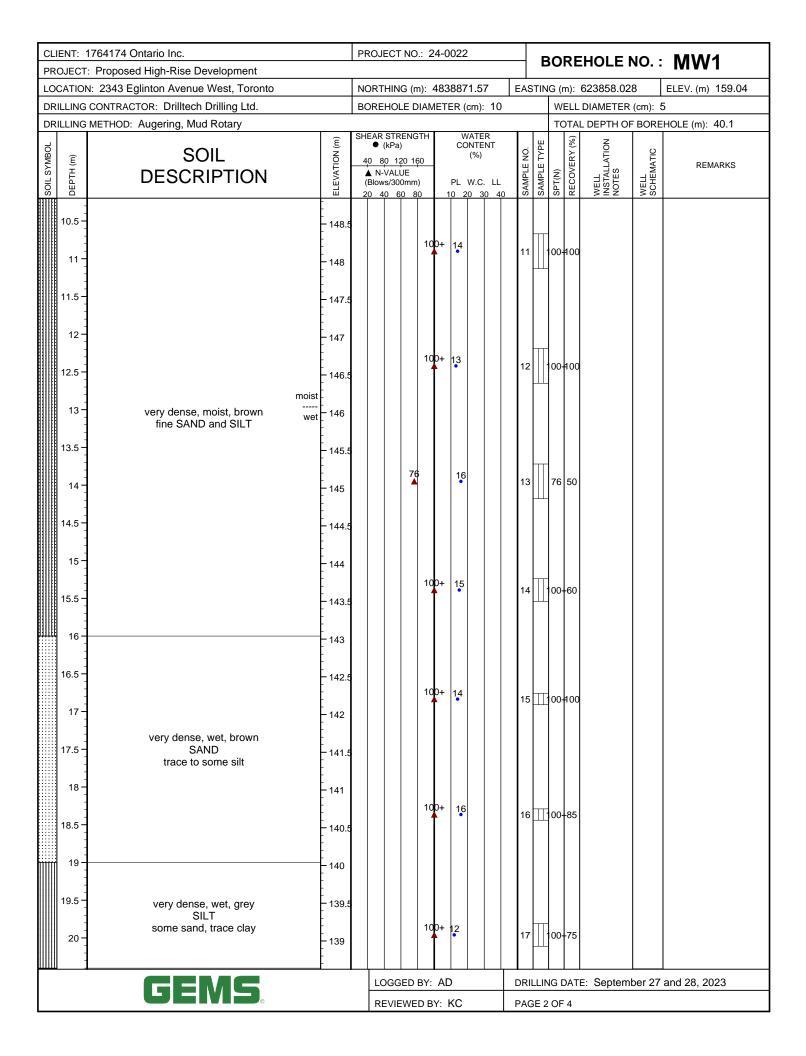
405-317 ADELAIDE STREET WEST TORONTO CANADA M5V 1P9 +1 416 599 9729 WWW.RAWDESIGN.CA

22029

2343 Eglinton Ave. W,
Toronto, ON

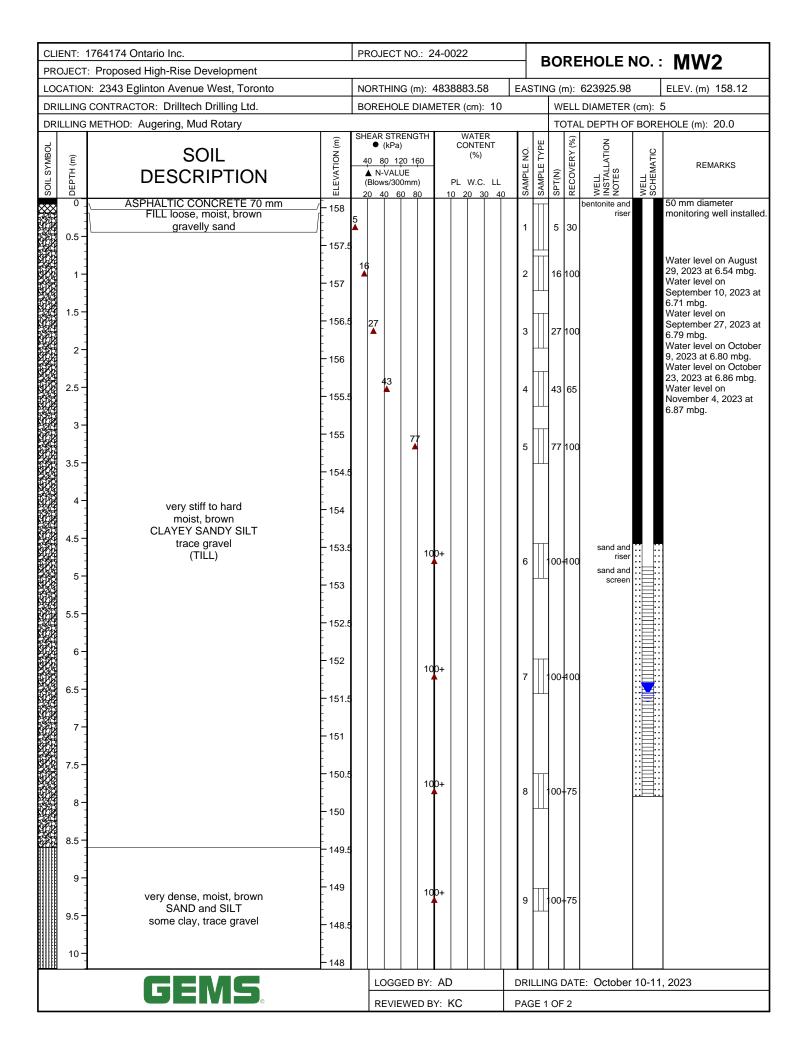
– PROPOSED DEVELOPMENT

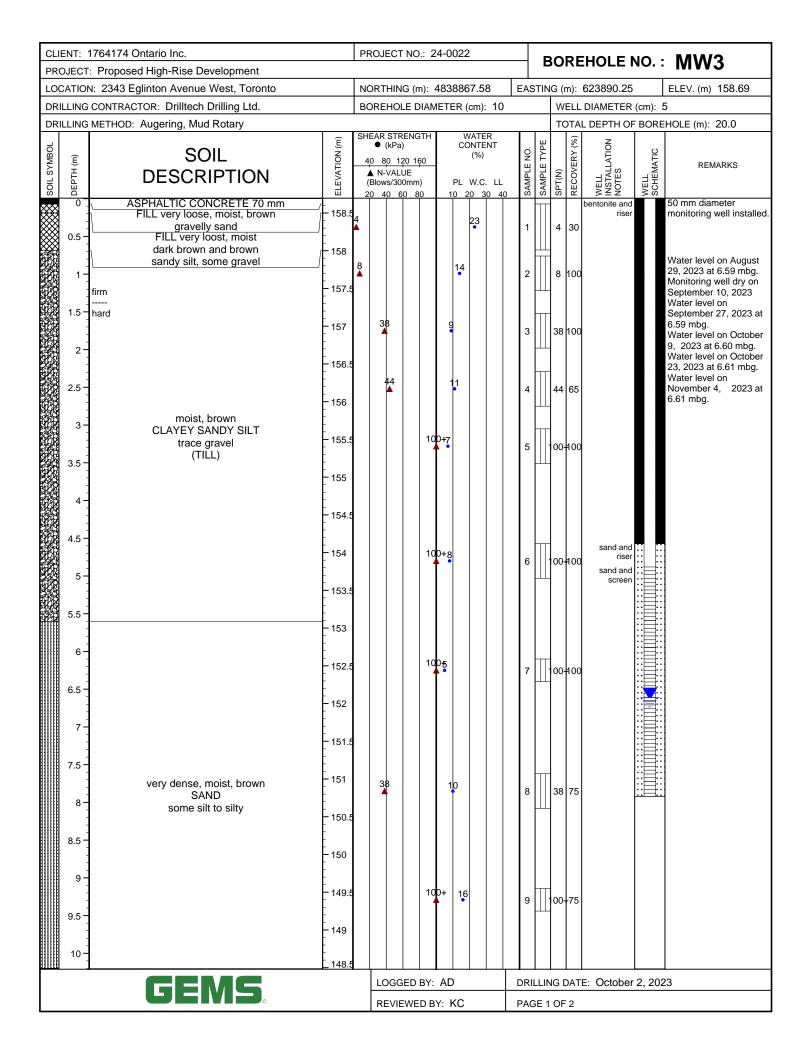

BUILDING SECTION


SCALE: 1:200

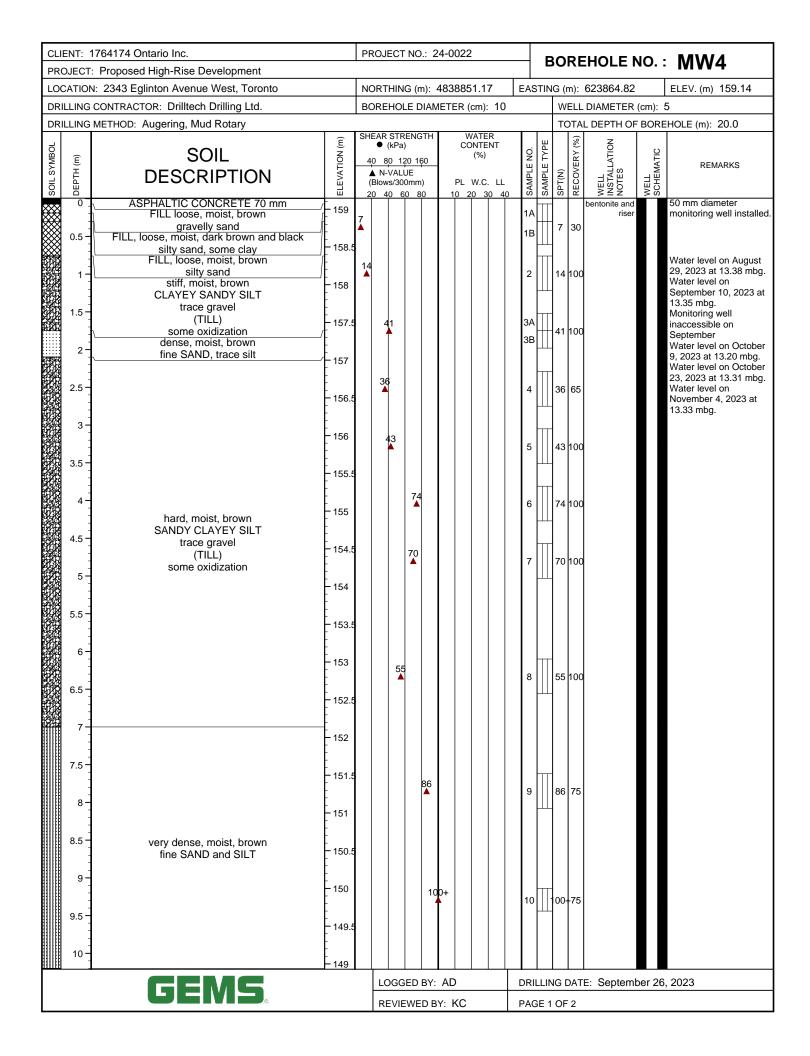
A502

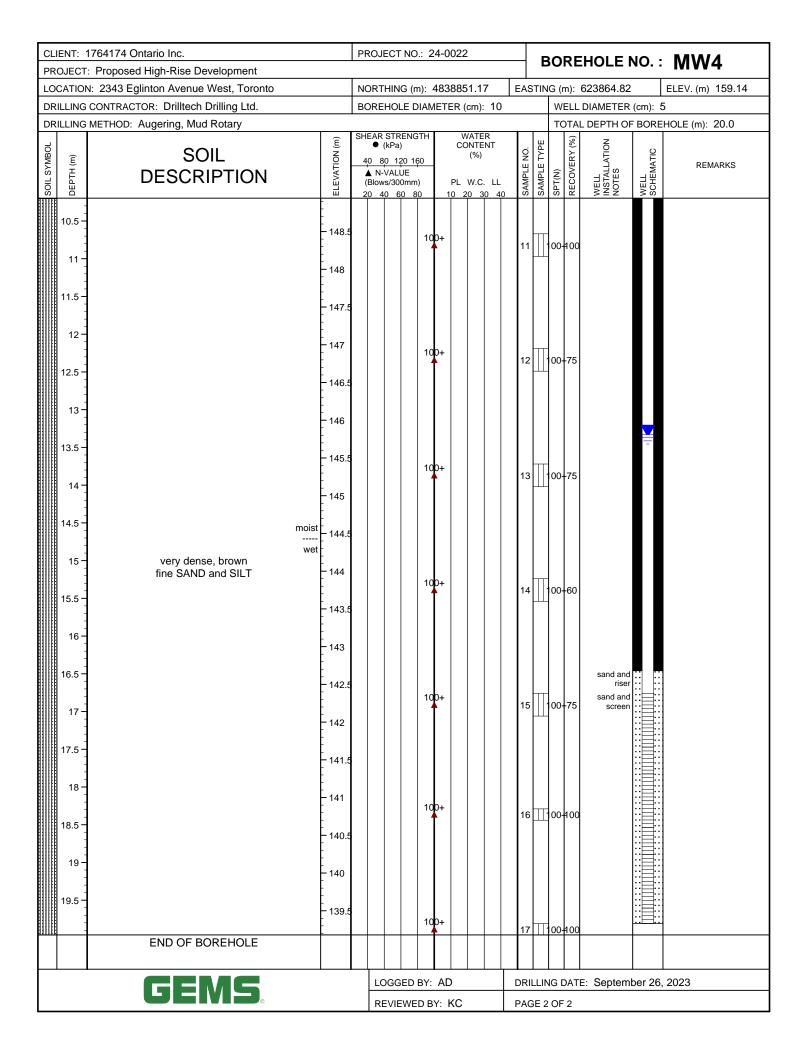
Appendix B

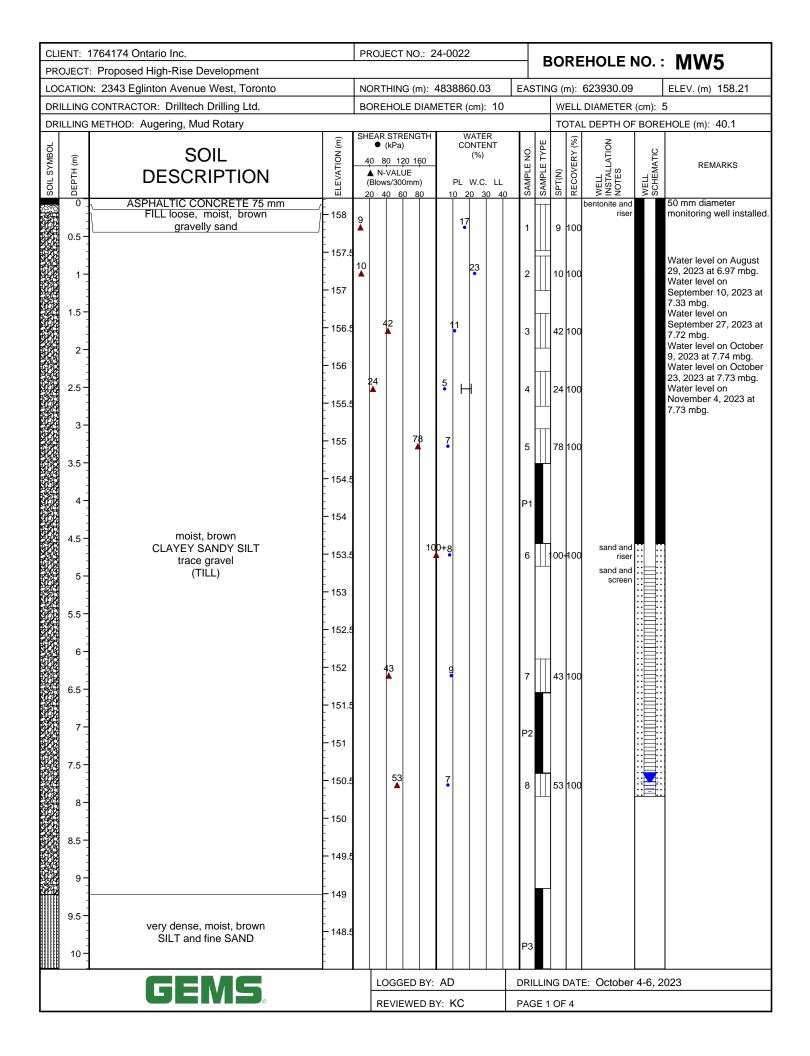

Borehole Logs

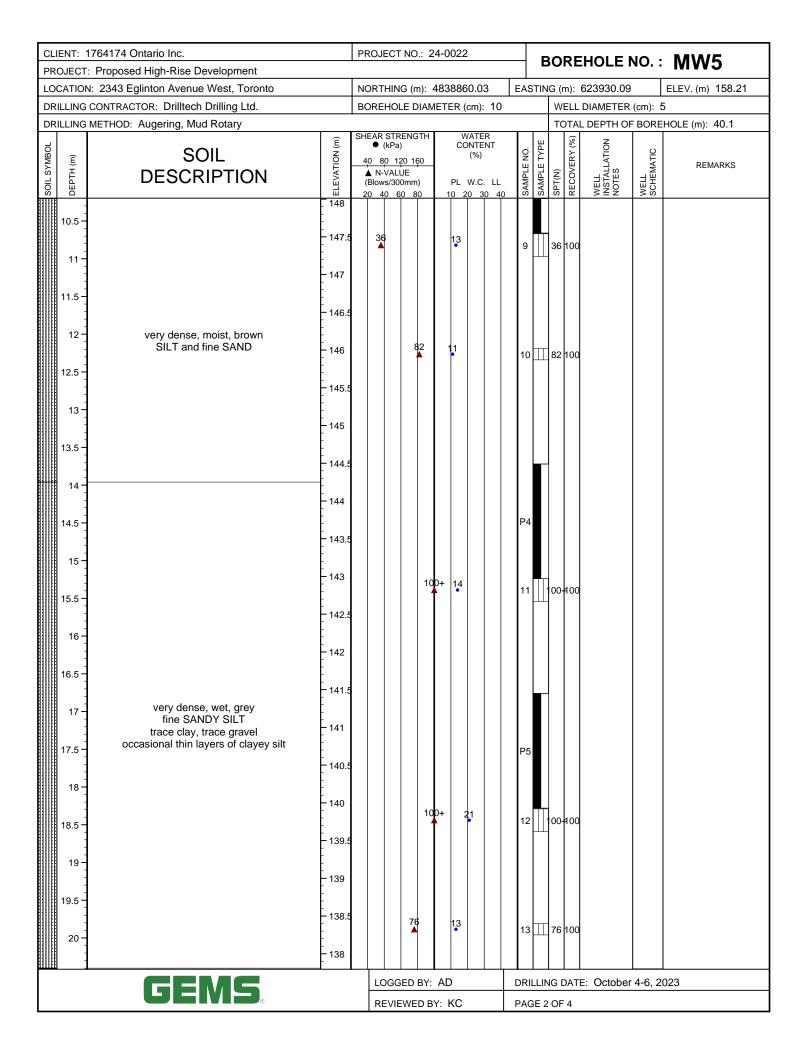


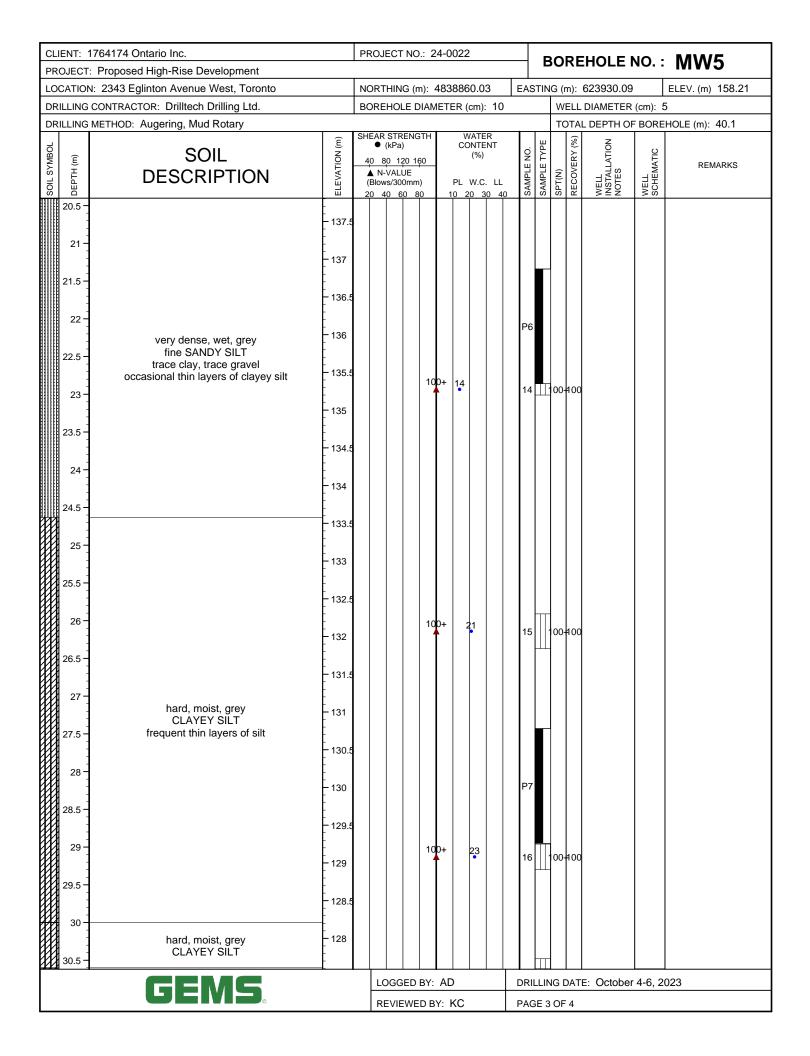
		1764174 Ontario Inc.		PROJI	ECT NO).: 24-	002	2			В	OF	RE	HOLE	NO. :	
		: Proposed High-Rise Development N: 2343 Eglinton Avenue West, Toronto		NODT	HING (n	n): 18	388.	71 57	,	EVS				623858.02		ELEV. (m) 159.04
		CONTRACTOR: Drilltech Drilling Ltd.			HOLE D					LAS	IIIN			DIAMETER		
DI	RILLING	METHOD: Augering, Mud Rotary										то	TAI	L DEPTH OF	BORE	HOLE (m): 40.1
SOIL SYMBOL		SOIL DESCRIPTION	ELEVATION (m)	40 8 A N- (Blow	STRENG (kPa) 0 120 16 VALUE s/300mm 0 60 8	50 i)	PL	WATER ONTER (%) W.C. 20 30	NT LL	SAMPLE NO.	SAMPLE TYPE	SPT(N)	RECOVERY (%)	WELL INSTALLATION NOTES	WELL SCHEMATIC	REMARKS
	20.5	very dense, wet, grey SILT some sand clay	138.5.138 137.5.137 136.5.136 135.5.134 134.5.134			100+	12	o, σ,		18		00+	75			
	26.5 - 27.5 - 28.5 - 29.5 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 3	dense to very dense and hard wet, grey frequent layers of SILT and CLAYEY SILT	133 132.5 132 131.5 131 130.5 129.5	31		100+		22 22 25 22 25		21 22 23A 23B		31 11 11 00-4	00			
	30.5	CLÁYEY ŠĬĽT	128.5								П					
		GEMS.		LC	GGED	BY: A	D.			DRIL	LIN	G D	ΑTI	E: Septemb	ber 27	and 28, 2023
				RE	VIEWE	D BY:	KC			PAG	E 3	OF	4			

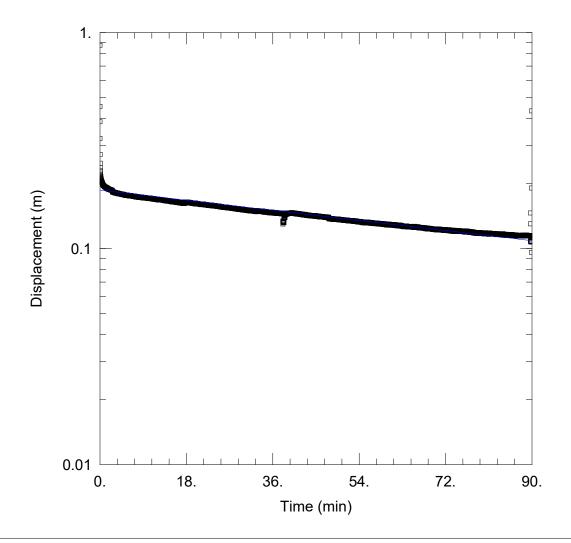

-		1764174 Ontario Inc.		PRO	JECT	NO.	: 24	-002	22				В	30	RE	HOLE	NO. :	MW1
-		: Proposed High-Rise Development N: 2343 Eglinton Avenue West, Toronto		NOP	THING	G (m	۱۰ ۸۵	328	R71 F	57	T	Δς.				623858.02		ELEV. (m) 159.04
		CONTRACTOR: Drilltech Drilling Ltd.			EHOL							AS	HIN			DIAMETER	•	
-		METHOD: Augering, Mud Rotary							(-)									:HOLE (m): 40.1
SOIL SYMBOL	DЕРТН (m)	SOIL DESCRIPTION	ELEVATION (m)	40 A N (Blo	R STRI (kPa) 80 12 N-VALL bws/300 40 60	20 160 JE Omm)	0	PI	WATI CONTI (%) W.C	ENT)	-	$\overline{}$	SAMPLE TYPE	_	RECOVERY (%)	WELL INSTALLATION NOTES	WELL SCHEMATIC	REMARKS
	31 -		- - - 128		6	2			20			24		62	100			
	31.5		- 127.5 - - - - 127				100-	+ 1	₂ 20			25A	11.	00-	100			
	32.5		- 126.5									25B						
	33 -		- - 126 -															
	33.5 -		- 125.5 - - - - - 125		44				19			26		44	70			
	34.5		- - - 124.5															
	35 -	hard and very stiff, moist grey CLAYEY SILT	- 124 -		36				18			27		36	100			
	35.5 -	32.1.2.	- 123.5 - - - - - 123															
	36.5		- - - 122.5		38				20			28		38	100			
	37 -		- 122 									20		30	100			
	37.5 – - - - - - - -		- 121.5 - - - - 121															
	38.5		- - 120.5	24					21			29		24	100			
	39 -		- 120 															
	39.5 -	END OF BODE 101 F	- 119.5 - - - - 119	3(0				20			30		30	100			
		END OF BOREHOLE																
		CENAC			.OGGI	ED E	3Y: <i>F</i>	AD				DRIL	LIN	.— IG [DAT	E: Septem	ber 27	and 28, 2023
		GEMS.			REVIE				3			PAG						




DRILLING METHOD: Augering, Mud Rotary NORTHING (m): 4838883.58 EASTING (m): 623925.98 ELEV. (m) 158.12 BOREHOLE DIAMETER (cm): 10 WELL DIAMETER (cm): 5 TOTAL DEPTH OF BOREHOLE (m): 20.0			764174 Ontario Inc.		PROJE	CT N	10.: 2	24-0	022				В	80	RE	HOLE N	NO. :	MW2
DRILLING METHOD. Augering, Mud Rotary Total Contract Core: Definice to Gring Law Society Total Contract Contract Core: Society Total Contract Contract Contract Core: Society Total Contract				\neg	NODTU	INIC	(m):	182	8883	5.52	\neg	EVO						
SOIL	-			+								EAS	HIN					
SOIL DESCRIPTION 10.5	-																	
11- 115- 115- 116- 117- 118- 118- 119- 119- 119- 119- 119- 119	SOIL SYMBOL	DЕРТН (m)	SOIL DESCRIPTION (W)		● (kl 40 80 ▲ N-V/ (Blows/	Pa) <u>120</u> ALUE '300m	160 : nm)		CON (° PL W	ITEN %) /.C.	LL	SAMPLE NO.	SAMPLE TYPE	SPT(N)	RECOVERY (%)	WELL INSTALLATION NOTES	WELL SCHEMATIC	REMARKS
13.5		11.5 -	very dense, wet, brown SAND and SILT some clay, trace gravel	7 6.5 5.5	43	3	100	0+										
15.5 - 142.5 100+ 13 100-60 15.5 - 16.5 - 16.5 - 16.5 - 141.5 17.5 - 141.5 17.5 - 140.5 18.5 - 18.5 - 19.5 - 100+ 16.5 - 17.5 - 100-400 16.5 - 17.5 -		14 -	- - 144 - - - 144	4.5 4			100	D+				12		100-	-75			
SILT and fine SAND 117- 117- 117- 117- 117- 117- 118- 118		15.5	- - - 142 - -	2.5			10	0+				13		100-	-60			
18- 18- 18- 19- 19- 19- 19- 19- 19- 19- 19		17 -	SILT and fine SAND -141	1			10	0+				14]],	100-	-75			
19.5 - 138.5 100+ 16 T100400 END OF BOREHOLE LOGGED BY: AD DRILLING DATE: October 10-11, 2023		18.5	- - 140 - -				10	0+				15		00-	100			
		-	- - - - 138				10	0+				16]]/	100-	100			
DEVIEWED BY: KC BACE 2 OF 2			CEME		LOC	GGE	D BY:	ΑD)			DRII	LIN	IG [DAT	E: October	10-11	, 2023
REVIEWED BT. NO PAGE 2 OF 2	L				RE\	/IEW	/ED B	Y: k	C.			PAG	E 2	OF	2			




CLIENT: 17	764174 Ontario Inc.		PROJECT	NO.: 2	24-00	22				20	RF	HOLF I	<u>۱</u> ٠٠	MW3
	Proposed High-Rise Development		NODTURE	O /\	4000	067.5	, T							
	: 2343 Eglinton Avenue West, Toronto CONTRACTOR: Drilltech Drilling Ltd.		NORTHIN BOREHOL					EAS	STIN			623890.25 DIAMETER		ELEV. (m) 158.69
	METHOD: Augering, Mud Rotary					()								:HOLE (m): 20.0
SOIL SYMBOL DEPTH (m)	SOIL DESCRIPTION	ELEVATION (m)	SHEAR STR) <u>20 160</u> UE 0mm)	- - P	WATE CONTE (%) L W.C	ENT	SAMPLE NO.	SAMPLE TYPE	SPT(N)	RECOVERY (%)	WELL INSTALLATION NOTES	WELL SCHEMATIC	REMARKS
11.5	dense to very dense, brown SAND some silt to silty	147.5147.5147.5147.5147.5146.5145.5145.5144.5.	20 40 6	90	1000+11	20 3		10 11 12 13		Lds 90 00-	-60 -75		AN OS	
19.5 -	END OF BOREHOLE	- 139		10	00+ 1	2		16		00-	100			
								\perp						
	GEMS		LOGG	ED BY	: AD			DRII	LLIN	NG E	DAT	E: October	2, 202	23
	<u>G</u> EIVIS.		REVIE	WED E	3Y: K	c		PAG	SE 2	OF	2			



		1764174 Ontario Inc.		PRO	JEC	T NC).: 24	4-0	022					В	0	RE	HOLE	NO. :	MW5
		: Proposed High-Rise Development N: 2343 Eglinton Avenue West, Toronto	Т	NOR	THII	NG (r	m): 4	8.3	8860	.03		F	AS ⁻				623930.09		ELEV. (m) 158.21
		CONTRACTOR: Drilltech Drilling Ltd.							ER (cr								DIAMETER		
DR	ILLING	METHOD: Augering, Mud Rotary													TC	ТА	L DEPTH OF	BORE	EHOLE (m): 40.1
SOIL SYMBOL	DЕРТН (m)	SOIL DESCRIPTION		40 ▲ N (Blo	(kP 80 N-VA ws/3	a) 120 1	60 n)		CON (' PL W 0 20	%) /.C.	IT LL			SAMPLE TYPE	SPT(N)	RECOVERY (%)	WELL INSTALLATION NOTES	WELL	REMARKS
	31 -	- 127 127 127 126	7				100)+	18				17		00-	100			
	32 - 32 -	- 120 120 - 120																	
	33 -	- 128 - 128											P8						
	33.5	- 124 - - - - - 124					100)+	20				18		00-	100			
	34 – 34.5 –	- - 124	4																
	35 –	- 123 - 123																	
	35.5 -	hard, moist, grey - 123 CLAYEY SILT - 123											P9						
	36 - 36.5 -	- - 12: - -	2																
	37 -	- 12 ⁻					100)+	2	24			19		00-	400			
	37.5 -	- 12 ²																	
	38 -	- - - 120	0																
	38.5 -	- 11S										F	P10						
	39.5	- 118 					100)+	0.2										
	40 -	END OF BOREHOLE	+		-				22				20		00-	100			
		CENC		L	OG	GED	BY:	ΑC	· <u>'</u> -		T	D	RIL	LIN	IG [DAT	E: October	4-6, 2	023
		GEMS.					D BY				\dashv				OF			, -	
				1 '	·- v	v L	اں ت	- '				- 1			<u></u>	-			

Appendix C

Hydraulic Conductivity

HYDRAUIC CONDUCTIVITY TEST 1 - MW2

PROJECT INFORMATION

Company: GEMS

Client: 1764174 Ontario Inc.

Project: 24-0022

Location: 2343 Eglinton Avenue West

Test Well: MW2

Test Date: 2024-09-10

AQUIFER DATA

Saturated Thickness: 23.29 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW2)

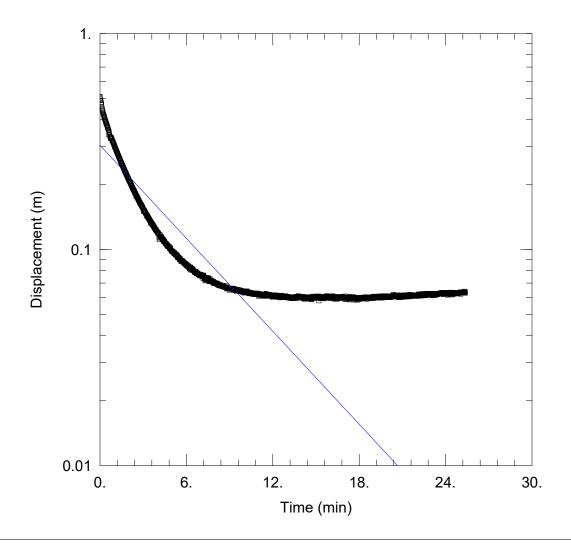
Initial Displacement: 0.8736 m

Total Well Penetration Depth: 3. m

Casing Radius: 0.026 m

Static Water Column Height: 1.29 m

Screen Length: 3. m Well Radius: 0.0254 m


SOLUTION

Aquifer Model: Unconfined

K = 5.365E-8 m/sec

Solution Method: Hvorslev

y0 = 0.1865 m

HYDRAUIC CONDUCTIVITY TEST 1 - MW4

PROJECT INFORMATION

Company: GEMS

Client: 1764174 Ontario Inc.

Project: 24-0022

Location: 2343 Eglinton Avenue West

Test Well: MW4

Test Date: 2024-09-10

AQUIFER DATA

Saturated Thickness: 16.65 m Anisotropy Ratio (Kz/Kr): 1.

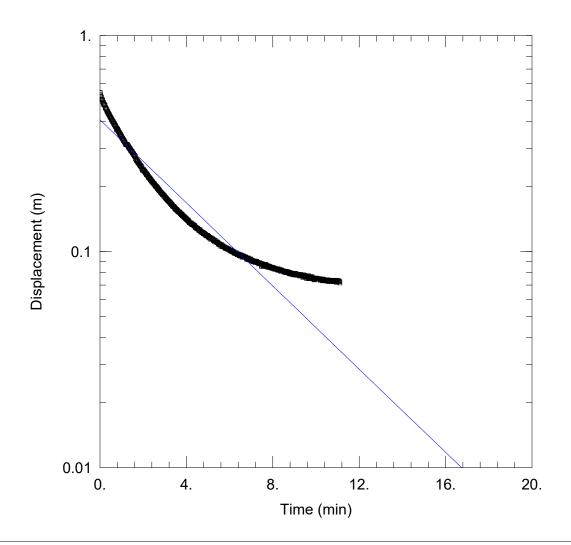
WELL DATA (MW4)

Initial Displacement: 0.5111 m

Total Well Penetration Depth: 6.15 m

Casing Radius: 0.026 m

Static Water Column Height: 6.15 m


Screen Length: 3. m Well Radius: 0.0254 m

SOLUTION

Aguifer Model: Unconfined

K = 1.48E-6 m/sec y0 = 0.3039 m

Solution Method: <u>Hvorslev</u>

HYDRAUIC CONDUCTIVITY TEST 2 - MW4

PROJECT INFORMATION

Company: GEMS

Client: 1764174 Ontario Inc.

Project: 24-0022

Location: 2343 Eglinton Avenue West

Test Well: MW4

Test Date: 2024-09-10

AQUIFER DATA

Saturated Thickness: 16.65 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW4)

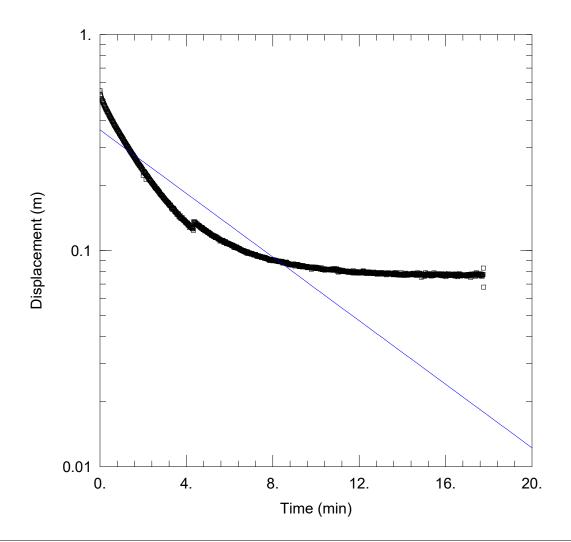
Initial Displacement: 0.5445 m

Total Well Penetration Depth: 6.15 m

Casing Radius: 0.026 m

Static Water Column Height: 6.15 m

Screen Length: 3. m Well Radius: 0.0254 m


SOLUTION

Aquifer Model: Unconfined

K = 1.984E-6 m/sec

Solution Method: Hvorslev

y0 = 0.4074 m

HYDRAUIC CONDUCTIVITY TEST 3 - MW4

PROJECT INFORMATION

Company: GEMS

Client: 1764174 Ontario Inc.

Project: 24-0022

Location: 2343 Eglinton Avenue West

Test Well: MW4

Test Date: 2024-09-10

AQUIFER DATA

Saturated Thickness: 16.65 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW4)

Initial Displacement: 0.5489 m

Total Well Penetration Depth: 6.15 m

Casing Radius: 0.026 m

Static Water Column Height: 6.15 m

Screen Length: 3. m Well Radius: 0.0254 m

Solution Method: Hvorslev

SOLUTION

Aquifer Model: Unconfined

K = 1.517E-6 m/sec

y0 = 0.3619 m

Appendix D

Water Quality Analysis

Your Project #: 24-0022

Site Location: 2343 EGLINTON AVE W

Your C.O.C. #: 936966-01-01

Attention: Laura Maharaj

Groundwater Environmental Management Services Inc. 150 Rivermede Rd Unit # 9 Concord, ON CANADA L4K 3M8

Report Date: 2023/11/03

Report #: R7894277 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3X5217 Received: 2023/10/26, 15:29

Sample Matrix: Water # Samples Received: 1

# Samples Received: 1		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Sewer Use By-Law Semivolatile Organics	1	2023/10/31	2023/11/02	CAM SOP 00301	EPA 8270 m
Biochemical Oxygen Demand (BOD)	1	2023/10/28	2023/11/02	CAM SOP-00427	SM 23 5210B m
Chromium (VI) in Water	1	N/A	2023/10/30	CAM SOP-00436	EPA 7199 m
Total Cyanide	1	2023/10/29	2023/10/29	CAM SOP-00457	OMOE E3015 5 m
Fluoride	1	2023/10/28	2023/10/30	CAM SOP-00449	SM 23 4500-F C m
Mercury in Water by CVAA	1	2023/11/01	2023/11/01	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by ICPMS	1	2023/10/31	2023/11/01	CAM SOP-00447	EPA 6020B m
E.coli, (CFU/100mL)	1	N/A	2023/10/26	CAM SOP-00552	MECP E3371
Total Nonylphenol in Liquids by HPLC	1	2023/10/31	2023/11/01	CAM SOP-00313	In-house Method
Nonylphenol Ethoxylates in Liquids: HPLC	1	2023/10/31	2023/11/01	CAM SOP-00313	In-house Method
Animal and Vegetable Oil and Grease	1	N/A	2023/11/03	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2023/11/03	2023/11/03	CAM SOP-00326	EPA1664B m,SM5520B m
Polychlorinated Biphenyl in Water	1	2023/10/27	2023/10/30	CAM SOP-00309	EPA 8082A m
рН	1	2023/10/28	2023/10/30	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2023/10/30	CAM SOP-00444	OMOE E3179 m
Total Kjeldahl Nitrogen in Water	1	2023/10/30	2023/10/31	CAM SOP-00938	OMOE E3516 m
Total PAHs (1)	1	N/A	2023/11/02	CAM SOP - 00301	
Mineral/Synthetic O & G (TPH Heavy Oil) (2)	1	2023/11/03	2023/11/03	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	1	2023/11/01	2023/11/03	CAM SOP-00428	SM 23 2540D m
Volatile Organic Compounds in Water	1	N/A	2023/11/02	CAM SOP-00228	EPA 8260D

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Your Project #: 24-0022

Site Location: 2343 EGLINTON AVE W

Your C.O.C. #: 936966-01-01

Attention: Laura Maharaj

Groundwater Environmental Management Services Inc. 150 Rivermede Rd Unit # 9 Concord, ON CANADA L4K 3M8

Report Date: 2023/11/03

Report #: R7894277 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3X5217

Received: 2023/10/26, 15:29

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Total PAHs include only those PAHs specified in the sewer use by-by-law.
- (2) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Jolanta Goralczyk, Project Manager Email: Jolanta.Goralczyk@bureauveritas.com Phone# (905)817-5751

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Total Cover Pages : 2 Page 2 of 19

Client Project #: 24-0022

Site Location: 2343 EGLINTON AVE W

Sampler Initials: KIM

TORONTO SANITARY&STORM SEWER (100-2016)

Bureau Veritas ID				XKM715		
Sampling Date				2023/10/26 08:00		
COC Number				936966-01-01		
eoc Number	UNITS	Criteria	Criteria-2	EAW MW4 2343 EGLINTON AVE W	RDL	QC Batch
Calculated Parameters						
Total Animal/Vegetable Oil and Grease	mg/L	-	150	ND	5.0	9007752
Inorganics		•			•	
Total BOD	mg/L	15	300	3	2	9013350
Fluoride (F-)	mg/L	-	10	0.55	0.10	9013690
Total Kjeldahl Nitrogen (TKN)	mg/L	-	100	3.0	0.10	9015966
рН	рН	6.0:9.5	6.0:11.5	7.81		9013706
Phenols-4AAP	mg/L	0.008	1.0	0.033	0.0010	9015629
Total Suspended Solids	mg/L	15	350	31	10	9020513
Total Cyanide (CN)	mg/L	0.02	2	ND	0.0050	9014435
Petroleum Hydrocarbons		•			•	
Total Oil & Grease	mg/L	-	-	ND	5.0	9026221
Total Oil & Grease Mineral/Synthetic	mg/L	-	15	ND	5.0	9026222
Miscellaneous Parameters		•			•	
Nonylphenol Ethoxylate (Total)	mg/L	0.01	0.2	ND	0.005	9018223
Nonylphenol (Total)	mg/L	0.001	0.02	ND	0.001	9018206
Metals		•	•			
Chromium (VI)	ug/L	40	2000	ND	0.50	9014971
Mercury (Hg)	mg/L	0.0004	0.01	ND	0.00010	9020961
Total Aluminum (Al)	ug/L	-	50000	390	4.9	9017374
Total Antimony (Sb)	ug/L	-	5000	ND	0.50	9017374
Total Arsenic (As)	ug/L	20	1000	ND	1.0	9017374
Total Cadmium (Cd)	ug/L	8	700	ND	0.090	9017374
Total Chromium (Cr)	ug/L	80	4000	ND	5.0	9017374
Total Cobalt (Co)	ug/L	-	5000	0.74	0.50	9017374
Total Copper (Cu)	ug/L	40	2000	11	0.90	9017374
Total Lead (Pb)	ug/L	120	1000	0.88	0.50	9017374

No Fill Grey No Exceedance

Black

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Toronto Storm Sewer Discharge Use By-Law

Criteria-2: Toronto Sanitary and Combined Sewers Discharge Guidelines. Referenced to the Chapter 681.

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Client Project #: 24-0022

Site Location: 2343 EGLINTON AVE W

Sampler Initials: KIM

TORONTO SANITARY&STORM SEWER (100-2016)

Bureau Veritas ID				XKM715		
Sampling Data				2023/10/26		
Sampling Date				08:00		
COC Number				936966-01-01		
	UNITS	Criteria	Criteria-2	EAW MW4 2343 EGLINTON AVE W	RDL	QC Batch
Total Manganese (Mn)	ug/L	50	5000	170	2.0	9017374
Total Molybdenum (Mo)	ug/L	-	5000	4.0	0.50	9017374
Total Nickel (Ni)	ug/L	80	2000	2.5	1.0	9017374
Total Phosphorus (P)	ug/L	400	10000	ND	100	9017374
Total Selenium (Se)	ug/L	20	1000	ND	2.0	9017374
Total Silver (Ag)	ug/L	120	5000	ND	0.090	9017374
Total Tin (Sn)	ug/L	-	5000	11	1.0	9017374
Total Titanium (Ti)	ug/L	-	5000	18	5.0	9017374
Total Zinc (Zn)	ug/L	40	2000	15	5.0	9017374
Semivolatile Organics						
Di-N-butyl phthalate	ug/L	15	80	ND	8	9017420
Bis(2-ethylhexyl)phthalate	ug/L	8.8	12	ND	8	9017420
3,3'-Dichlorobenzidine	ug/L	0.8	2	ND	0.8	9017420
Pentachlorophenol	ug/L	2	5	ND	2	9017420
Phenanthrene	ug/L	-	-	ND	0.8	9017420
Anthracene	ug/L	-	-	ND	0.8	9017420
Fluoranthene	ug/L	-	-	ND	0.8	9017420
Pyrene	ug/L	-	-	ND	0.8	9017420
Benzo(a)anthracene	ug/L	-	-	ND	0.8	9017420
Chrysene	ug/L	-	-	ND	0.8	9017420
Benzo(b/j)fluoranthene	ug/L	-	-	ND	0.8	9017420
Benzo(k)fluoranthene	ug/L	-	-	ND	0.8	9017420
Benzo(a)pyrene	ug/L	-	-	ND	0.8	9017420
Indeno(1,2,3-cd)pyrene	ug/L	-	-	ND	0.8	9017420
Dibenzo(a,h)anthracene	ug/L	-	-	ND	0.8	9017420
Benzo(g,h,i)perylene	ug/L	-	-	ND	0.8	9017420
Dibenzo(a,i)pyrene	ug/L	-	-	ND	0.8	9017420

No Fill Grey No Exceedance

Grey Black Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Criteria: Toronto Storm Sewer Discharge Use By-Law

Criteria-2: Toronto Sanitary and Combined Sewers Discharge Guidelines. Referenced to the Chapter 681.

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Client Project #: 24-0022

Site Location: 2343 EGLINTON AVE W

Sampler Initials: KIM

TORONTO SANITARY&STORM SEWER (100-2016)

Bureau Veritas ID				XKM715		
Sampling Date				2023/10/26		
Jamping Date				08:00		
COC Number				936966-01-01		
	UNITS	Criteria	Criteria-2	EAW MW4 2343 EGLINTON AVE W	RDL	QC Batch
Benzo(e)pyrene	ug/L	-	-	ND	0.8	9017420
Perylene	ug/L	-	-	ND	0.8	9017420
Dibenzo(a,j) acridine	ug/L	-	-	ND	2	9017420
7H-Dibenzo(c,g) Carbazole	ug/L	-	-	ND	2	9017420
1,6-Dinitropyrene	ug/L	-	-	ND	2	9017420
1,3-Dinitropyrene	ug/L	-	-	ND	2	9017420
1,8-Dinitropyrene	ug/L	-	-	ND	2	9017420
Calculated Parameters		•			•	•
Total PAHs (18 PAHs)	ug/L	2	5	ND (1)	5	9008003
Volatile Organics						
Benzene	ug/L	2	10	510	1.0	9014579
Chloroform	ug/L	2	40	5.7	0.20	9014579
1,2-Dichlorobenzene	ug/L	5.6	50	ND	0.40	9014579
1,4-Dichlorobenzene	ug/L	6.8	80	ND	0.40	9014579
cis-1,2-Dichloroethylene	ug/L	5.6	4000	ND	0.50	9014579
trans-1,3-Dichloropropene	ug/L	5.6	140	ND	0.40	9014579
Ethylbenzene	ug/L	2	160	130	0.20	9014579
Methylene Chloride(Dichloromethane)	ug/L	5.2	2000	ND	2.0	9014579
1,1,2,2-Tetrachloroethane	ug/L	17	1400	ND	0.40	9014579
Tetrachloroethylene	ug/L	4.4	1000	ND	0.20	9014579
Toluene	ug/L	2	16	560	1.0	9014579
Trichloroethylene	ug/L	7.6	400	ND	0.20	9014579
p+m-Xylene	ug/L	-	-	280	1.0	9014579
o-Xylene	ug/L	-	-	39	0.20	9014579
Total Xylenes	ug/L	4.4	1400	320	1.0	9014579

No Fill Grey Black No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Toronto Storm Sewer Discharge Use By-Law

Criteria-2: Toronto Sanitary and Combined Sewers Discharge Guidelines. Referenced to the Chapter 681.

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

(1) RDL exceeds criteria

Client Project #: 24-0022

Site Location: 2343 EGLINTON AVE W

Sampler Initials: KIM

TORONTO SANITARY&STORM SEWER (100-2016)

Bureau Veritas ID				XKM715		
Sampling Date				2023/10/26		
Sampling Date				08:00		
COC Number				936966-01-01		
	UNITS	Criteria	Criteria-2	EAW MW4 2343 EGLINTON AVE W	RDL	QC Batch
PCBs						
Total PCB	ug/L	0.4	1	ND	0.05	9013125
Microbiological						
Escherichia coli	CFU/100mL	200	-	<10	10	9009961
Surrogate Recovery (%)	·					
2,4,6-Tribromophenol	%	-	-	91		9017420
2-Fluorobiphenyl	%	-	-	62		9017420
D14-Terphenyl (FS)	%	-	-	100		9017420
D5-Nitrobenzene	%	-	-	83		9017420
D8-Acenaphthylene	%	-	-	74		9017420
Decachlorobiphenyl	%	-	-	76		9013125
4-Bromofluorobenzene	%	-	-	102		9014579
D4-1,2-Dichloroethane	%	-	-	91		9014579
D8-Toluene	%	-	-	104		9014579

No Fill
Grey
Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Toronto Storm Sewer Discharge Use By-Law

Criteria-2: Toronto Sanitary and Combined Sewers Discharge Guidelines. Referenced to the Chapter 681.

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Bureau Veritas Job #: C3X5217 Report Date: 2023/11/03 Groundwater Environmental Management Services Inc.

Client Project #: 24-0022

Site Location: 2343 EGLINTON AVE W

Sampler Initials: KIM

TEST SUMMARY

Bureau Veritas ID: XKM715

Sample ID: EAW MW4 2343 EGLINTON AVE W

Matrix: Water

Collected: 2023/10/26 Shipped:

Received: 2023/10/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Sewer Use By-Law Semivolatile Organics	GC/MS	9017420	2023/10/31	2023/11/02	Kathy Horvat
Biochemical Oxygen Demand (BOD)	DO	9013350	2023/10/28	2023/11/02	Gurjot Kaur
Chromium (VI) in Water	IC	9014971	N/A	2023/10/30	Theodora Luck
Total Cyanide	SKAL/CN	9014435	2023/10/29	2023/10/29	Prgya Panchal
Fluoride	ISE	9013690	2023/10/28	2023/10/30	Surinder Rai
Mercury in Water by CVAA	CV/AA	9020961	2023/11/01	2023/11/01	Gagandeep Rai
Total Metals Analysis by ICPMS	ICP/MS	9017374	2023/10/31	2023/11/01	Arefa Dabhad
E.coli, (CFU/100mL)	PL	9009961	N/A	2023/10/26	Soham Patel
Total Nonylphenol in Liquids by HPLC	LC/FLU	9018206	2023/10/31	2023/11/01	Furneesh Kumar
Nonylphenol Ethoxylates in Liquids: HPLC	LC/FLU	9018223	2023/10/31	2023/11/01	Furneesh Kumar
Animal and Vegetable Oil and Grease	BAL	9007752	N/A	2023/11/03	Automated Statchk
Total Oil and Grease	BAL	9026221	2023/11/03	2023/11/03	Navneet Singh
Polychlorinated Biphenyl in Water	GC/ECD	9013125	2023/10/27	2023/10/30	Akruti Patel
рН	AT	9013706	2023/10/28	2023/10/30	Surinder Rai
Phenols (4AAP)	TECH/PHEN	9015629	N/A	2023/10/30	Chloe Pollock
Total Kjeldahl Nitrogen in Water	SKAL	9015966	2023/10/30	2023/10/31	Rajni Tyagi
Total PAHs	CALC	9008003	N/A	2023/11/02	Automated Statchk
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	9026222	2023/11/03	2023/11/03	Navneet Singh
Total Suspended Solids	BAL	9020513	2023/11/01	2023/11/03	Shaneil Hall
Volatile Organic Compounds in Water	GC/MS	9014579	N/A	2023/11/02	Narayan Ghimire

Client Project #: 24-0022

Site Location: 2343 EGLINTON AVE W

Sampler Initials: KIM

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Sample XKM715 [EAW MW4 2343 EGLINTON AVE W]: VOC Analysis: Due to high concentrations of target analytes, sample required dilution. Detection limits were adjusted accordingly. In order to meet required regulatory criteria or to achieve lower reporting limits, results for selected compounds (obtained by a separate analysis using an appropriate low dilution) are included in the report.

ABN Analysis: Due to the sample matrix, a smaller than usual portion of the sample was used for extraction. Detection limits were adjusted accordingly.

Results relate only to the items tested.

Report Date: 2023/11/03

Groundwater Environmental Management Services Inc.

Client Project #: 24-0022

Site Location: 2343 EGLINTON AVE W

Sampler Initials: KIM

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9013125	AP1	Matrix Spike	Decachlorobiphenyl	2023/10/30		79	%	60 - 130
			Total PCB	2023/10/30		89	%	60 - 130
9013125	AP1	Spiked Blank	Decachlorobiphenyl	2023/10/30		80	%	60 - 130
			Total PCB	2023/10/30		95	%	60 - 130
9013125	AP1	Method Blank	Decachlorobiphenyl	2023/10/30		81	%	60 - 130
			Total PCB	2023/10/30	ND, RDL=0.05		ug/L	
9013125	AP1	RPD	Total PCB	2023/10/30	NC		%	40
9013350	GUJ	QC Standard	Total BOD	2023/11/02		94	%	80 - 120
9013350	GUJ	Method Blank	Total BOD	2023/11/02	ND,RDL=2		mg/L	
9013350	GUJ	RPD	Total BOD	2023/11/02	NC		%	30
9013690	SAU	Matrix Spike	Fluoride (F-)	2023/10/30		103	%	80 - 120
9013690	SAU	Spiked Blank	Fluoride (F-)	2023/10/30		101	%	80 - 120
9013690	SAU	Method Blank	Fluoride (F-)	2023/10/30	ND, RDL=0.10		mg/L	
9013690	SAU	RPD	Fluoride (F-)	2023/10/30	0.46		%	20
9013706	SAU	Spiked Blank	рН	2023/10/30		102	%	98 - 103
9013706	SAU	RPD	рН	2023/10/30	1.7		%	N/A
9014435	GYA	Matrix Spike	Total Cyanide (CN)	2023/10/29		112	%	80 - 120
9014435	GYA	Spiked Blank	Total Cyanide (CN)	2023/10/29		100	%	80 - 120
9014435	GYA	Method Blank	Total Cyanide (CN)	2023/10/29	ND, RDL=0.0050		mg/L	
9014435	GYA	RPD	Total Cyanide (CN)	2023/10/29	NC		%	20
9014579	NGH	Matrix Spike	4-Bromofluorobenzene	2023/10/31		104	%	70 - 130
			D4-1,2-Dichloroethane	2023/10/31		91	%	70 - 130
			D8-Toluene	2023/10/31		98	%	70 - 130
			Benzene	2023/10/31		86	%	70 - 130
			Chloroform	2023/10/31		91	%	70 - 130
			1,2-Dichlorobenzene	2023/10/31		99	%	70 - 130
			1,4-Dichlorobenzene	2023/10/31		106	%	70 - 130
			cis-1,2-Dichloroethylene	2023/10/31		94	%	70 - 130
			trans-1,3-Dichloropropene	2023/10/31		83	%	70 - 130
			Ethylbenzene	2023/10/31		84	%	70 - 130
			Methylene Chloride(Dichloromethane)	2023/10/31		94	%	70 - 130
			1,1,2,2-Tetrachloroethane	2023/10/31		101	%	70 - 130
			Tetrachloroethylene	2023/10/31		95	%	70 - 130
			Toluene	2023/10/31		87	%	70 - 130
			Trichloroethylene	2023/10/31		97	%	70 - 130
			p+m-Xylene	2023/10/31		87	%	70 - 130
			o-Xylene	2023/10/31		78	%	70 - 130
9014579	NGH	Spiked Blank	4-Bromofluorobenzene	2023/10/31		103	%	70 - 130
			D4-1,2-Dichloroethane	2023/10/31		88	%	70 - 130
			D8-Toluene	2023/10/31		99	%	70 - 130
			Benzene	2023/10/31		83	%	70 - 130
			Chloroform	2023/10/31		87	%	70 - 130
			1,2-Dichlorobenzene	2023/10/31		89	%	70 - 130
			1,4-Dichlorobenzene	2023/10/31		96	%	70 - 130
			cis-1,2-Dichloroethylene	2023/10/31		91	%	70 - 130
			trans-1,3-Dichloropropene	2023/10/31		88	%	70 - 130
			Ethylbenzene	2023/10/31		78	%	70 - 130
			Methylene Chloride(Dichloromethane)	2023/10/31		92	%	70 - 130

Client Project #: 24-0022

Site Location: 2343 EGLINTON AVE W

Sampler Initials: KIM

QA/QC			QUALITY ASSURANCE REP					
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			1,1,2,2-Tetrachloroethane	2023/10/31		90	%	70 - 130
			Tetrachloroethylene	2023/10/31		90	%	70 - 130
			Toluene	2023/10/31		83	%	70 - 130
			Trichloroethylene	2023/10/31		93	%	70 - 130
			p+m-Xylene	2023/10/31		81	%	70 - 130
			o-Xylene	2023/10/31		73	%	70 - 130
9014579	NGH	Method Blank	4-Bromofluorobenzene	2023/10/31		102	%	70 - 130
			D4-1,2-Dichloroethane	2023/10/31		86	%	70 - 130
			D8-Toluene	2023/10/31		98	%	70 - 130
			Benzene	2023/10/31	ND, RDL=0.20		ug/L	
			Chloroform	2023/10/31	ND, RDL=0.20		ug/L	
			1,2-Dichlorobenzene	2023/10/31	ND, RDL=0.40		ug/L	
			1,4-Dichlorobenzene	2023/10/31	ND, RDL=0.40		ug/L	
			cis-1,2-Dichloroethylene	2023/10/31	ND, RDL=0.50		ug/L	
			trans-1,3-Dichloropropene	2023/10/31	ND, RDL=0.40		ug/L	
			Ethylbenzene	2023/10/31	ND, RDL=0.20		ug/L	
			Methylene Chloride(Dichloromethane)	2023/10/31	ND, RDL=2.0		ug/L	
			1,1,2,2-Tetrachloroethane	2023/10/31	ND, RDL=0.40		ug/L	
			Tetrachloroethylene	2023/10/31	ND, RDL=0.20		ug/L	
			Toluene	2023/10/31	ND, RDL=0.20		ug/L	
			Trichloroethylene	2023/10/31	ND, RDL=0.20		ug/L	
			p+m-Xylene	2023/10/31	ND, RDL=0.20		ug/L	
			o-Xylene	2023/10/31	ND, RDL=0.20		ug/L	
			Total Xylenes	2023/10/31	ND, RDL=0.20		ug/L	
9014579	NGH	RPD	Benzene	2023/10/31	NC		%	30
			Chloroform	2023/10/31	NC		%	30
			1,2-Dichlorobenzene	2023/10/31	NC		%	30
			1,4-Dichlorobenzene	2023/10/31	NC		%	30
			cis-1,2-Dichloroethylene	2023/10/31	NC		%	30
			trans-1,3-Dichloropropene	2023/10/31	NC		%	30
			Ethylbenzene	2023/10/31	NC		%	30
			Methylene Chloride(Dichloromethane)	2023/10/31	NC		%	30
			1,1,2,2-Tetrachloroethane	2023/10/31	NC		%	30
			Tetrachloroethylene	2023/10/31	NC		%	30
			Toluene	2023/10/31	NC		%	30
			Trichloroethylene	2023/10/31	NC		%	30
			p+m-Xylene	2023/10/31	NC		%	30

Client Project #: 24-0022

Site Location: 2343 EGLINTON AVE W

Sampler Initials: KIM

			QUALITY ASSURANCE					
QA/QC		227		5				001: 1
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			o-Xylene	2023/10/31	NC		%	30
			Total Xylenes	2023/10/31	NC		%	30
9014971	TL2	Matrix Spike	Chromium (VI)	2023/10/30		103	%	80 - 120
9014971	TL2	Spiked Blank	Chromium (VI)	2023/10/30		97	%	80 - 120
9014971	TL2	Method Blank	Chromium (VI)	2023/10/30	ND, RDL=0.50		ug/L	
004 4074	T1 2	DDD	Characteristic (A.0)	2022/40/20			0/	20
9014971	TL2	RPD	Chromium (VI)	2023/10/30	NC	101	%	20
9015629	CPO	Matrix Spike	Phenols-4AAP	2023/10/30		104	%	80 - 120
9015629	CPO	Spiked Blank	Phenols-4AAP	2023/10/30	*15	101	%	80 - 120
9015629	CPO	Method Blank	Phenols-4AAP	2023/10/30	ND, RDL=0.0010		mg/L	
9015629	CPO	RPD	Phenols-4AAP	2023/10/30	0		%	20
9015966	RTY	Matrix Spike	Total Kjeldahl Nitrogen (TKN)	2023/10/31		107	%	80 - 120
9015966	RTY	QC Standard	Total Kjeldahl Nitrogen (TKN)	2023/10/31		97	%	80 - 120
9015966	RTY	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2023/10/31		93	%	80 - 120
9015966	RTY	Method Blank	Total Kjeldahl Nitrogen (TKN)	2023/10/31	ND, RDL=0.10		mg/L	
9015966	RTY	RPD	Total Kjeldahl Nitrogen (TKN)	2023/10/31	11		%	20
9017374	ADA	Matrix Spike	Total Aluminum (Al)	2023/11/01		104	%	80 - 120
			Total Antimony (Sb)	2023/11/01		104	%	80 - 120
			Total Arsenic (As)	2023/11/01		97	%	80 - 120
			Total Cadmium (Cd)	2023/11/01		99	%	80 - 120
			Total Chromium (Cr)	2023/11/01		94	%	80 - 120
			Total Cobalt (Co)	2023/11/01		96	%	80 - 120
			Total Copper (Cu)	2023/11/01		101	%	80 - 120
			Total Lead (Pb)	2023/11/01		96	%	80 - 120
			Total Manganese (Mn)	2023/11/01		96	%	80 - 120
			Total Maligariese (Mili) Total Molybdenum (Mo)	2023/11/01		100	%	80 - 120
			Total Nickel (Ni)	2023/11/01		94	%	80 - 120
			Total Phosphorus (P)	2023/11/01		99	%	80 - 120
			Total Selenium (Se)	2023/11/01		100	%	80 - 120
			Total Selemum (Se) Total Silver (Ag)	2023/11/01		96	%	80 - 120
			· -	2023/11/01				
			Total Tin (Sn) Total Titanium (Ti)	2023/11/01		103 98	% %	80 - 120 80 - 120
			, ,					
9017374	٨٦٨	Cailead Blank	Total Aluminum (AI)	2023/11/01		93	% %	80 - 120 80 - 120
901/3/4	ADA	Spiked Blank	Total Autimony (Ch)	2023/11/01		101		
			Total Antimony (Sb)	2023/11/01		100	%	80 - 120
			Total Arsenic (As)	2023/11/01		97	%	80 - 120
			Total Characters (Ca)	2023/11/01		96	%	80 - 120
			Total Cabalt (Ca)	2023/11/01		92	%	80 - 120
			Total Cobalt (Co)	2023/11/01		99	%	80 - 120
			Total Copper (Cu)	2023/11/01		100	%	80 - 120
			Total Lead (Pb)	2023/11/01		95	%	80 - 120
			Total Manganese (Mn)	2023/11/01		95	%	80 - 120
			Total Molybdenum (Mo)	2023/11/01		97	%	80 - 120
			Total Nickel (Ni)	2023/11/01		93	%	80 - 120
			Total Phosphorus (P)	2023/11/01		93	%	80 - 120
			Total Selenium (Se)	2023/11/01		98	%	80 - 120
			Total Silver (Ag)	2023/11/01		94	%	80 - 120
			Total Tin (Sn)	2023/11/01		100	%	80 - 120
			Total Titanium (Ti)	2023/11/01		99	%	80 - 120

Client Project #: 24-0022

Site Location: 2343 EGLINTON AVE W

Sampler Initials: KIM

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Zinc (Zn)	2023/11/01		94	%	80 - 120
9017374	ADA	Method Blank	Total Aluminum (AI)	2023/11/01	ND,		ug/L	
					RDL=4.9			
			Total Antimony (Sb)	2023/11/01	ND, RDL=0.50		ug/L	
			Total Arsenic (As)	2023/11/01	ND,		ug/L	
			Total Alsellie (As)	2023/11/01	RDL=1.0		ug/ L	
			Total Cadmium (Cd)	2023/11/01	ND, RDL=0.090		ug/L	
			Total Chromium (Cr)	2023/11/01	ND, RDL=5.0		ug/L	
			Total Cobalt (Co)	2023/11/01	ND, RDL=0.50		ug/L	
			Total Copper (Cu)	2023/11/01	ND, RDL=0.90		ug/L	
			Total Lead (Pb)	2023/11/01	ND, RDL=0.50		ug/L	
			Total Manganese (Mn)	2023/11/01	ND, RDL=2.0		ug/L	
			Total Molybdenum (Mo)	2023/11/01	ND, RDL=0.50		ug/L	
			Total Nickel (Ni)	2023/11/01	ND, RDL=1.0		ug/L	
			Total Phosphorus (P)	2023/11/01	ND, RDL=100		ug/L	
			Total Selenium (Se)	2023/11/01	ND, RDL=2.0		ug/L	
			Total Silver (Ag)	2023/11/01	ND, RDL=0.090		ug/L	
			Total Tin (Sn)	2023/11/01	ND, RDL=1.0		ug/L	
			Total Titanium (Ti)	2023/11/01	ND, RDL=5.0		ug/L	
			Total Zinc (Zn)	2023/11/01	ND, RDL=5.0		ug/L	
9017374	ADA	RPD	Total Aluminum (Al)	2023/11/01	0.31		%	20
			Total Antimony (Sb)	2023/11/01	NC		%	20
			Total Arsenic (As)	2023/11/01	NC		%	20
			Total Cadmium (Cd)	2023/11/01	NC		%	20
			Total Chromium (Cr)	2023/11/01	NC		%	20
			Total Cobalt (Co)	2023/11/01	NC		%	20
			Total Copper (Cu)	2023/11/01	1.5		%	20
			Total Lead (Pb)	2023/11/01	NC		%	20
			Total Manganese (Mn)	2023/11/01	NC		%	20
			Total Molybdenum (Mo)	2023/11/01	12		%	20
			Total Nickel (Ni)	2023/11/01	NC		%	20
			Total Nicker (NI) Total Selenium (Se)	2023/11/01	NC		%	20
			Total Seleman (Se)	2023/11/01	NC		%	20
			Total Tin (Sn)	2023/11/01	NC		% %	20
			Total Till (Sil) Total Titanium (Ti)					
			Total Titanium (11) Total Zinc (Zn)	2023/11/01 2023/11/01	NC 2.0		% %	20 20
		Matrix Spike	2,4,6-Tribromophenol	2023/11/01	2.0	103	% %	10 - 130

Client Project #: 24-0022

Site Location: 2343 EGLINTON AVE W

Sampler Initials: KIM

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			2-Fluorobiphenyl	2023/10/31		116	%	30 - 130
			D14-Terphenyl (FS)	2023/10/31		111	%	30 - 130
			D5-Nitrobenzene	2023/10/31		40	%	30 - 130
			D8-Acenaphthylene	2023/10/31		120	%	30 - 130
			Di-N-butyl phthalate	2023/10/31		103	%	30 - 130
			Bis(2-ethylhexyl)phthalate	2023/10/31		119	%	30 - 130
			3,3'-Dichlorobenzidine	2023/10/31		74	%	30 - 130
			Pentachlorophenol	2023/10/31		69	%	30 - 130
			Phenanthrene	2023/10/31		95	%	30 - 130
			Anthracene	2023/10/31		95	%	30 - 130
			Fluoranthene	2023/10/31		113	%	30 - 130
			Pyrene	2023/10/31		113	%	30 - 130
			Benzo(a)anthracene	2023/10/31		111	%	30 - 130
			Chrysene	2023/10/31		103	%	30 - 130
			Benzo(b/j)fluoranthene	2023/10/31		118	%	30 - 130
			Benzo(k)fluoranthene	2023/10/31		105	%	30 - 130
			Benzo(a)pyrene	2023/10/31		120	%	30 - 130
			Indeno(1,2,3-cd)pyrene	2023/10/31		106	%	30 - 130
			Dibenzo(a,h)anthracene	2023/10/31		91	%	30 - 130
			Benzo(g,h,i)perylene	2023/10/31		104	%	30 - 130
			Dibenzo(a,i)pyrene	2023/10/31		78	%	30 - 130
			Benzo(e)pyrene	2023/10/31		114	%	30 - 130
			Perylene	2023/10/31		88	%	30 - 130
			Dibenzo(a,j) acridine	2023/10/31		90	%	30 - 130
			7H-Dibenzo(c,g) Carbazole	2023/10/31		82	%	30 - 130
			1,6-Dinitropyrene	2023/10/31		61	%	30 - 130
			1,3-Dinitropyrene	2023/10/31		53	%	30 - 130
			1,8-Dinitropyrene	2023/10/31		64	%	30 - 130
9017420	кно	Spiked Blank	2,4,6-Tribromophenol	2023/10/31		92	%	10 - 130
		- P	2-Fluorobiphenyl	2023/10/31		79	%	30 - 130
			D14-Terphenyl (FS)	2023/10/31		100	%	30 - 130
			D5-Nitrobenzene	2023/10/31		35	%	30 - 130
			D8-Acenaphthylene	2023/10/31		85	%	30 - 130
			Di-N-butyl phthalate	2023/10/31		87	%	30 - 130
			Bis(2-ethylhexyl)phthalate	2023/10/31		105	%	30 - 130
			3,3'-Dichlorobenzidine	2023/10/31		87	%	30 - 130
			Pentachlorophenol	2023/10/31		44	%	30 - 130
			Phenanthrene	2023/10/31		90	%	30 - 130
			Anthracene	2023/10/31		88	%	30 - 130
			Fluoranthene	2023/10/31		103	%	30 - 130
			Pyrene	2023/10/31		103	%	30 - 130
			Benzo(a)anthracene	2023/10/31		102	%	30 - 130
			Chrysene	2023/10/31		96	%	30 - 130
			Benzo(b/j)fluoranthene	2023/10/31		105	%	30 - 130
			Benzo(k)fluoranthene	2023/10/31		113	%	30 - 130
			Benzo(k)nuorantnene Benzo(a)pyrene	2023/10/31		113	% %	30 - 130
			Indeno(1,2,3-cd)pyrene	2023/10/31		122	%	30 - 130
			Dibenzo(a,h)anthracene	2023/10/31		103		
							%	30 - 130
			Benzo(g,h,i)perylene	2023/10/31		118	%	30 - 130
			Dibenzo(a,i)pyrene	2023/10/31		92	%	30 - 130
			Benzo(e)pyrene	2023/10/31		108	%	30 - 130

Client Project #: 24-0022

Site Location: 2343 EGLINTON AVE W

Sampler Initials: KIM

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Perylene	2023/10/31		100	%	30 - 130
			Dibenzo(a,j) acridine	2023/10/31		99	%	30 - 130
			7H-Dibenzo(c,g) Carbazole	2023/10/31		101	%	30 - 130
			1,6-Dinitropyrene	2023/10/31		67	%	30 - 130
			1,3-Dinitropyrene	2023/10/31		60	%	30 - 130
			1,8-Dinitropyrene	2023/10/31		72	%	30 - 130
9017420	KHO	Method Blank	2,4,6-Tribromophenol	2023/10/31		64	%	10 - 130
			2-Fluorobiphenyl	2023/10/31		81	%	30 - 130
			D14-Terphenyl (FS)	2023/10/31		105	%	30 - 130
			D5-Nitrobenzene	2023/10/31		35	%	30 - 130
			D8-Acenaphthylene	2023/10/31		93	%	30 - 130
			Di-N-butyl phthalate	2023/10/31	ND,RDL=2		ug/L	
			Bis(2-ethylhexyl)phthalate	2023/10/31	ND,RDL=2		ug/L	
			3,3'-Dichlorobenzidine	2023/10/31	ND,		ug/L	
					RDL=0.8			
			Pentachlorophenol	2023/10/31	ND,RDL=1		ug/L	
			Phenanthrene	2023/10/31	ND,		ug/L	
					RDL=0.2			
			Anthracene	2023/10/31	ND,		ug/L	
					RDL=0.2			
			Fluoranthene	2023/10/31	ND,		ug/L	
					RDL=0.2			
			Pyrene	2023/10/31	ND,		ug/L	
					RDL=0.2			
			Benzo(a)anthracene	2023/10/31	ND,		ug/L	
					RDL=0.2			
			Chrysene	2023/10/31	ND,		ug/L	
					RDL=0.2			
			Benzo(b/j)fluoranthene	2023/10/31	ND,		ug/L	
			D (1)(1)	2022/40/24	RDL=0.2		4	
			Benzo(k)fluoranthene	2023/10/31	ND, RDL=0.2		ug/L	
			Donzo/a)nyrona	2022/10/21	ND,		/1	
			Benzo(a)pyrene	2023/10/31	RDL=0.2		ug/L	
			Indeno(1,2,3-cd)pyrene	2023/10/31	ND,		ug/L	
			mueno(1,2,3-cu)pyrene	2023/10/31	RDL=0.2		ug/ L	
			Dibenzo(a,h)anthracene	2023/10/31	ND,		ug/L	
			Bibeni20(a)njantinacene	2023/10/31	RDL=0.2		46/ L	
			Benzo(g,h,i)perylene	2023/10/31	ND,		ug/L	
			(0) / / - /	, -,-	RDL=0.2		- 0/	
			Dibenzo(a,i)pyrene	2023/10/31	ND,		ug/L	
					RDL=0.2		.	
			Benzo(e)pyrene	2023/10/31	ND,		ug/L	
					RDL=0.2		-	
			Perylene	2023/10/31	ND,		ug/L	
					RDL=0.2			
			Dibenzo(a,j) acridine	2023/10/31	ND,		ug/L	
					RDL=0.4			
			7H-Dibenzo(c,g) Carbazole	2023/10/31	ND,		ug/L	
					RDL=0.4			
			1,6-Dinitropyrene	2023/10/31	ND,		ug/L	
					RDL=0.4			

Client Project #: 24-0022

Site Location: 2343 EGLINTON AVE W

Sampler Initials: KIM

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			1,3-Dinitropyrene	2023/10/31	ND,		ug/L	
					RDL=0.4			
			1,8-Dinitropyrene	2023/10/31	ND,		ug/L	
					RDL=0.4			
9017420	KHO	RPD	Di-N-butyl phthalate	2023/11/01	NC		%	40
			Bis(2-ethylhexyl)phthalate	2023/11/01	NC		%	40
			3,3'-Dichlorobenzidine	2023/11/01	NC		%	40
			Pentachlorophenol	2023/11/01	NC		%	40
			Phenanthrene	2023/11/01	NC		%	40
			Anthracene	2023/11/01	NC		%	40
			Fluoranthene	2023/11/01	NC		%	40
			Pyrene	2023/11/01	NC		%	40
			Benzo(a)anthracene	2023/11/01	NC		%	40
			Chrysene	2023/11/01	NC		%	40
			Benzo(b/j)fluoranthene	2023/11/01	NC		%	40
			Benzo(k)fluoranthene	2023/11/01	NC		%	40
			Benzo(a)pyrene	2023/11/01	NC		%	40
			Indeno(1,2,3-cd)pyrene	2023/11/01	NC		%	40
			Dibenzo(a,h)anthracene	2023/11/01	NC		%	40
			Benzo(g,h,i)perylene	2023/11/01	NC		%	40
			Dibenzo(a,i)pyrene	2023/11/01	NC		%	40
			Benzo(e)pyrene	2023/11/01	NC		%	40
			Perylene	2023/11/01	NC		%	40
			Dibenzo(a,j) acridine	2023/11/01	NC		%	40
			7H-Dibenzo(c,g) Carbazole	2023/11/01	NC		%	40
			1,6-Dinitropyrene	2023/11/01	NC		%	40
			1,3-Dinitropyrene	2023/11/01	NC		%	40
			1,8-Dinitropyrene	2023/11/01	NC		%	40
9018206	FKU	Matrix Spike	Nonylphenol (Total)	2023/11/01		108	%	50 - 130
9018206	FKU	Spiked Blank	Nonylphenol (Total)	2023/11/01		109	%	50 - 130
9018206	FKU	Method Blank	Nonylphenol (Total)	2023/11/01	ND, RDL=0.001		mg/L	
9018206	FKU	RPD	Nonylphenol (Total)	2023/11/01	NC		%	40
9018223	FKU	Matrix Spike	Nonylphenol Ethoxylate (Total)	2023/11/01		86	%	50 - 130
9018223	FKU	Spiked Blank	Nonylphenol Ethoxylate (Total)	2023/11/01		86	%	50 - 130
9018223	FKU	Method Blank	Nonylphenol Ethoxylate (Total)	2023/11/01	ND, RDL=0.005		mg/L	
9018223	FKU	RPD	Nonylphenol Ethoxylate (Total)	2023/11/01	NC		%	40
9020513	SHD	Spiked Blank	Total Suspended Solids	2023/11/03	110	96	%	85 - 11 5
9020513	SHD	Method Blank	Total Suspended Solids	2023/11/03	ND,	30	mg/L	03 113
9020513	SHD	RPD	Total Suspended Solids	2023/11/03	RDL=10 12		%	20
9020961	GR1	Matrix Spike	Mercury (Hg)	2023/11/03	14	100	%	75 - 125
9020961	GR1	Spiked Blank	Mercury (Hg)	2023/11/01		100	% %	80 - 120
9020961	GR1	Method Blank	Mercury (Hg)	2023/11/01	ND,	103	∞ mg/L	00 - 120
9020901	GKI	Wethou Blank	Mercury (ng)	2023/11/01	RDL=0.00010		IIIg/L	
9020961	GR1	RPD	Mercury (Hg)	2023/11/01	NC		%	20
9026221	NSG	Spiked Blank	Total Oil & Grease	2023/11/03		98	%	85 - 115
9026221	NSG	RPD	Total Oil & Grease	2023/11/03	0.25		%	25
9026221	NSG	Method Blank	Total Oil & Grease	2023/11/03	ND, RDL=0.50		mg/L	

Bureau Veritas Job #: C3X5217 Report Date: 2023/11/03 Groundwater Environmental Management Services Inc.

Client Project #: 24-0022

Site Location: 2343 EGLINTON AVE W

Sampler Initials: KIM

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9026222	NSG	Spiked Blank	Total Oil & Grease Mineral/Synthetic	2023/11/03		96	%	85 - 115
9026222	NSG	RPD	Total Oil & Grease Mineral/Synthetic	2023/11/03	0		%	25
9026222	NSG	Method Blank	Total Oil & Grease Mineral/Synthetic	2023/11/03	ND,		mg/L	
					RDL=0.50			

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Client Project #: 24-0022

Site Location: 2343 EGLINTON AVE W

Sampler Initials: KIM

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

assemb
Anastassia Hamanov, Scientific Specialist
===
Brad Newman, B.Sc., C.Chem., Scientific Service Specialist
Sohiem N Patet
Soham Patel. Senior Analyst

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

	12	VOICE TO:					REPOR	ET TO:				PRO.	JECT INFORMATI	ON:			Laboratory Use	Only:
pany Name	#24874 Ground	water Environmental f	Managemen	t Ser Como	iny Name	60	US				Quotation #	C2	5014	111			Bureau Veritas Job #:	Bottle Order #:
tion	Accounts Payab	e		Attenti			a Wah	eva)			P.O #							111111111111111111111111111111111111111
iss:	150 Rivermede I	AL SOCIETY OF THE SOC		Addre	-			U			Project.	10	191037- 24	-002	2			936966
	(905) 907-3077		F) 007 0047		7	2	Rei III				Project Nan		010 01		A (- (4)		COC#;	Project Manager
		e@gemservicesinc.com	5) 907-6617	Tel Email:	-	altha	mahar	Fax	comucosi		Site #	7	343 Egi	ucton	HUD VO	111111	C#936966-01-01	Jolanta Goraiczyi
IOE BE		G WATER OR WATER				-	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	Jesqui	SEVVICUEST		Sampled By	UESTED (PLEAS				-	Turnaround Time (TAT)	Required
OE RE	SUBMITTED ON 1	HE BUREAU VERITAS	DRINKING	WATER CHAI	N OF CUST	TODY MI	UST BE				T					THE SHARE	Please provide advance notice	
Regula	tion 153 (2011)	Ot	ther Regulation	15	Sp	ecial Instr	uctions	dinde):	901								tandard) TAT: d if Rush TAT is not specified):	
	Res/Park Mediu	n/Fine CCME	Sapitary Sewe	r Bylaw					- awar							7.7	= 5-7 Working days for most tests.	
e2 [Ind/Comm Coarse	Reg 558	Storm Sewer B					d Filtered (please Metals / Hg / Cr	E E				1 1			Please note: 5	Standard TAT for certain tests such as	BOD and Dioxins/Furaris are
e 3 [Agri/Other For R		unicipality 1 Reg 406 Tabi		-			J) pa	AS Sto					-			your Project Manager for details.	to to to a
		Other] Reg 406 Tabi		-			Filtered (nitary				1 1	-		Date Required	Rush TAT (if applies to entire su	Time Required
_	Include Criter	a on Certificate of Analy	usis (Y/N)?	7	-	_		Pie W	S.		-					Rush Confirm	ation Number:	(call lab for #)
Samp	ple Barcode Label	Sample (Location) Iden		Date Sampler	Time Sa	mpled	Matrix	Œ.	Torontic 2016)							# of Bottles		ments
1.10	d Acces	201- 1 1		2023/10/2		0	4.11	NA								18		
MHS	MW4	2343 Eglinton A	ave W	Torshols	6 8:0	0	GW	MIT				1				1.0		1
								VA W										
								J. Marie III										
								30 21							1			
-					+	-		100	-		-	_	+		301	-		
													11	1,010	26.0			
								Harrie.						11/11	26.0c	123 15:25		
								MA CON					4.	C3	11/1/a/c	21 15:20		
								baleus					10	-	1527	Mi.		
					-			Thursday.				_		E	1.			
								STATE						100	VV.857			
_					-	-		-					1	-			9-	
																1		
								Mary In						+		1		
								1 3 3										
								2,1500										
			1 -		1	_,										1		
		ignature/Print)	Date: (YY/	MM/DD)	Time		RECEIVED	BY: (Signature/		Date: (YY/I		Time	# jars use not subm	itted -	Time Sensitive	Labora	tory Use Only	
	RELINQUISHED BY: (Kimberly	23/10	101	00.00	STATE	1-1427	~ ~	PAIPI	Doul		15,20					ure (°C) on Recei Custody	Seal Yes.

Client Project #: 24-0022

Site Location: 2343 EGLINTON AVE W

Sampler Initials: KIM

Exceedance Summary Table – Toronto Storm Sewer

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
EAW MW4 2343 EGLINTON AVE W	XKM715-14	Benzene	2	510	1.0	ug/L
EAW MW4 2343 EGLINTON AVE W	XKM715-14	Chloroform	2	5.7	0.20	ug/L
EAW MW4 2343 EGLINTON AVE W	XKM715-14	Ethylbenzene	2	130	0.20	ug/L
EAW MW4 2343 EGLINTON AVE W	XKM715-11	Total Manganese (Mn)	50	170	2.0	ug/L
EAW MW4 2343 EGLINTON AVE W	XKM715-13	Phenols-4AAP	0.008	0.033	0.0010	mg/L
EAW MW4 2343 EGLINTON AVE W	XKM715-06	Total Suspended Solids	15	31	10	mg/L
EAW MW4 2343 EGLINTON AVE W	XKM715-14	Toluene	2	560	1.0	ug/L
EAW MW4 2343 EGLINTON AVE W	XKM715-14	Total Xylenes	4.4	320	1.0	ug/L

Detection Limit Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
EAW MW4 2343 EGLINTON AVE W	XKM715-01	Total PAHs (18 PAHs)	2	<5	5	ug/L

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Exceedance Summary Table – Toronto Sanitary Sewer Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
EAW MW4 2343 EGLINTON AVE W	XKM715-14	Benzene	10	510	1.0	ug/L
EAW MW4 2343 EGLINTON AVE W	XKM715-14	Toluene	16	560	1.0	ug/L

The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to applicable regulatory guidelines.

Appendix E

Dewatering Calculations

Table 1
Short-Term Dewatering Rate Calculations - 7 & 40 days
Proposed Development: 2343 Eglinton Avenue, Toronto

24-0203

Symbol	Description	Value	Value	Unit	Comment
		7 Days	40 Days		
Dewatering target	heights and elevations				
$E_{Target} = E_{invert} - 1$	Dewatering target elevation	148.20	148.20	masl	
E _{wp} = E _{Target} - 1	Target water level	147.20	147.20	masl	
H = E _{GW} - E _{wp}	Initial height of groundwater	7.80	7.80	m	
h = E _{Target} - E _{wp}	Target height of groundwater	1.00	1.00	m	
H - h	Drawdown required	6.80	6.80	m	
t	Duration of Dewatering	7	40	days	
K	Hydraulic Conductivity	2.0E-06	2.0E-06	m/s	
T	Transmissivity	1.5E-05	1.5E-05	m²/sec	T = K · (H - h)
Cs	Storage Coefficient	0.30	0.30	no units	
C ₄	Constant	4790	4790	no units	
a	Dewatered Area Length	87.0	87.0	m	
b	Dewatered Area Width	52.0	52.0	m	
r _w	Effective Well Radius of Open Excavation	44.2	44.2	m	$r_{w} = \frac{a+b}{\pi}$
R _o	Radius of influence	52.6	64.2	m	$R_o = r_w + \sqrt{\frac{T \cdot t}{C_4 \cdot C_s}}$
Q	Predicted Pumping Rate	128.9	59.9	L/min	Unconfined Conditions $\pi \cdot K \left(H^2 - h^2\right)$
		185,668	86,221	L/day	$Q = \frac{\pi \cdot K \left(H^2 - h^2\right)}{\ln \left(\frac{R_0}{r_w}\right)}$ (Powers et al., 2008)

Table 2
Long-Term Seepage Rate Calculations - 150 & 365 days
Proposed Development: 2343 Eglinton Avenue, Toronto

Project No. 24-0203

Symbol	Description	Value	Unit	Comment
		365 Days		
Dewatering target	heights and elevations			
E _{Target} = E _{invert}	Dewatering target elevation	149.20	masl	
$E_{wp} = E_{Target}$	Target water level	149.20	masl	
H = E _{GW} - E _{wp}	Initial height of groundwater	5.80	m	
h = E _{Target} - E _{wp}	Target height of groundwater	0.00	m	
H - h	Drawdown required	5.80	m	
t	Duration of Dewatering	365	days	
K	Hydraulic Conductivity	2.0E-06	m/s	
Т	Transmissivity	1.1E-05	m ² /sec	T = K · (H - h)
Cs	Storage Coefficient	0.30	no units	
C ₄	Constant	4790	no units	
а	Dewatered Area Length	87.0	m	
b	Dewatered Area Width	52.0	m	
r _w	Effective Well Radius of Open Excavation	44.2	m	$r_{w} = \frac{a+b}{\pi}$
R _o	Radius of influence	96.3	m	$R_o = r_w + \sqrt{\frac{T \cdot t}{C_4 \cdot C_s}}$
Q	Predicted Seepage Rate	16.1	L/min	Unconfined Conditions $Q = \frac{\pi \cdot K \left(H^2 - h^2\right)}{\ln \left(\frac{R_0}{r}\right)}$
		23,231	L/day	$\ln\left(\frac{R_0}{r_w}\right)$ (Powers et al., 2008)

Appendix F

MECP Wells within 500 m Radius

Table 1: MECP Wells

Location: 2343 Eglinton Avenue West, Toronto, ON

Project No. 24-0022

Project No		Ni a utla i a a	FID	Well Hoose
Well ID	Easting	Northing	FID	Well Usage
6928284	623921	4838871	0	Not Used
6929667	623806	4838935	1	N/A
6930099	623469	4838889	2	Not Used
6930586	623704	4839158	3	N/A
7103238	623705	4838752	4	Not Used
7120232	623662	4839235	5	Monitoring
7135256	623736	4839130	6	Not Used
7150548	623845	4838770	7	Monitoring
7150712	623845	4838781	8	N/A
7150713	623805	4838767	9	N/A
7152560	623860	4838856	10	Test Hole
7154478	623634	4838819	11	Other
7156213	623739	4839112	12	N/A
7156515	623552	4838802	13	Monitoring and Test Hole
7170709	623862	4839231	14	Monitoring and Test Hole
7170710	623864	4839279	15	Monitoring and Test Hole
7170711	623871	4839283	16	Monitoring and Test Hole
7170712	623864	4839279	17	Monitoring and Test Hole
7171141	623416	4838753	18	Monitoring
7171142	623699	4838844	19	Monitoring
7171535	623979	4838937	20	Monitoring
7171541	623514	4838778	21	Monitoring
7173046	623910	4838909	22	N/A
7173078	624216	4839042	23	N/A
7173189	624233	4839044	24	Monitoring
7174716	623819	4839275	25	Monitoring and Test Hole
7175199	623666	4838823	26	N/A
7177911	623754	4838848	27	Monitoring
7177912	623595	4838812	28	Monitoring
7177914	623606	4838727	29	Monitoring
7177915	623690	4838762	30	Monitoring
7177974	624295	4839112	31	Monitoring
7177977	624223	4839054	32	Monitoring
7178585	623567	4838810	33	N/A
7183103	623658	4838861	34	Monitoring
7183107	623551	4838870	35	Monitoring
7184732	624228	4839050	36	Monitoring
7184733	624224	4839068	37	Monitoring
7185116	623760	4838844	38	N/A
7185110	623814	4838794	39	Monitoring
7185171	623622	4839338	40	Monitoring and Test Hole
7185263	623641	4839324	41	Monitoring and Test Hole
7185265				
100700	623628	4839312	42	Monitoring and Test Hole

7407760	622500	4020200	40	1 21/2
7187768	623598	4839380	43	N/A
7187769	623618	4839371	44	Monitoring and Test Hole
7187770	623569	4839205	45	Monitoring and Test Hole
7190936	623817	4838718	46	Monitoring and Test Hole
7190937	623838	4838729	47	Monitoring and Test Hole
7193054	623650	4838849	48	Test Hole
7196155	623836	4838927	49	Monitoring and Test Hole
7198116	623874	4839299	50	Monitoring and Test Hole
7198117	623892	4839289	51	Monitoring and Test Hole
7198118	623866	4839293	52	Monitoring and Test Hole
7211338	623412	4838782	53	N/A
7211339	623547	4838587	54	N/A
7211402	623562	4838792	55	N/A
7213509	624218	4839060	56	Monitoring and Test Hole
7213510	624164	4839029	57	Monitoring and Test Hole
7213511	624214	4839067	58	Monitoring and Test Hole
7213820	623757	4838861	59	N/A
7214561	623767	4838892	60	Monitoring
7214562	623736	4838863	61	Monitoring
7214563	623721	4838895	62	Monitoring
7215096	623819	4839275	63	Monitoring and Test Hole
7217590	623836	4838922	64	Monitoring and Test Hole
7218623	623833	4838928	65	N/A
7219018	623571	4838814	66	Test Hole
7219019	623571	4838814	67	Test Hole
7220014	623575	4838826	68	Dewatering
7220015	623582	4838804	69	Dewatering
7223744	623657	4838807	70	Dewatering
7223745	623700	4838827	70	Dewatering
7223743	624227	4839045	72	Dewatering
7223793	624234	4839043	73	Dewatering
7223805	624242	4839041	73	<u> </u>
7225867				Dewatering
	624177	4839013	75	Monitoring Monitoring
7226179	623805	4838904	76	Monitoring and Test Hole
7226180	623905	4838906	77	Monitoring and Test Hole
7228273	623757	4838861	78	N/A
7230779	624235	4839018	79	Dewatering
7230783	623564	4838815	80	Dewatering
7230785	624257	4839027	81	Dewatering
7230786	623571	4838814	82	Dewatering
7231420	623836	4838918	83	N/A
7231483	623567	4838811	84	N/A
7235124	623958	4838721	85	Dewatering
7236625	623722	4838904	86	Monitoring
7238354	623726	4838885	87	N/A
7241094	623947	4838452	88	N/A
7242615	624209	4839004	89	Dewatering

7242616	624239	4839030	90	Dewatering
7244370	623966	4838942	91	Dewatering
7244371	623980	4838946	92	Dewatering
7244458	623964	4838989	93	Monitoring
7246646	623966	4838939	94	Dewatering
7246647	623975	4838941	95	Dewatering
7248621	623928	4838506	96	Monitoring and Test Hole
7248622	623916	4838499	97	Monitoring and Test Hole
7248623	623907	4838560	98	Monitoring and Test Hole
7253772	623970.3	4838943.5	99	Dewatering
7253773	623970.3	4838943.5	100	Dewatering
7253865	623975	4838941	101	Dewatering
7253866	623966	4838939	102	Dewatering
7253867	623980	4838946	103	Dewatering
7253868	623966	4838942	104	Dewatering
7253869	624226	4839037	105	N/A
7253870	624240	4839033	106	Monitoring
7253871	624238	4839040	107	Dewatering
7253872	624232	4839020	108	Dewatering
7253873	624243	4839024	109	Dewatering
7253874	624228	4839029	110	Dewatering
7253875	624239	4839022	111	Dewatering
7255817	623840	4839215	112	N/A
7255962	623827	4838927	113	Monitoring and Test Hole
7258028	624236	4839040	114	N/A
7258029	624240	4839033	115	N/A
7258030	624226	4839037	116	N/A
7258071	624242	4839041	117	N/A
7258072	624227	4839045	118	N/A
7258073	624234	4839044	119	N/A
7258782	623867.3	4838920.5	120	Monitoring
7258783	623882	4838905	121	Monitoring
7261284	623811	4838908	122	N/A
7261286	623804	4838904	123	N/A
7262445	623442	4838755	124	Monitoring
7262446	623466	4838759	125	Monitoring
7262447	623452	4838733	126	Monitoring
7262451	623796	4838901	127	N/A
7262452	623788	4838915	128	N/A
7263145	623664	4838806	129	Monitoring
7266056	623800	4838920	130	Monitoring and Test Hole
7268822	623771	4838766	131	N/A
7268823	623925	4838754	132	N/A
7268824	624038	4838759	133	N/A
7268825	624038	4838788	134	N/A
7270452	623681	4838835	135	Monitoring
7270453	623658	4838824	136	Monitoring
	023030	.555524		I

7281177	623839	4838924	137	N/A
7285804	624238	4839055	138	N/A
7287672	623616	4838767	139	N/A
7287939	623786	4838904	140	Test Hole
7291305	623399	4839367	141	Test Hole
7291307	623388	4839357	142	Test Hole
7291308	623382	4839367	143	Test Hole

Water Well Records

October 25, 2023

9:48:12 AM

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
TORONTO CITY	17 623925 4838754 W	2016-06 7091						7268823 (Z238894) A	
TORONTO CITY	17 623771 4838766 W	2016-06 7091						7268822 (Z238895) A	
TORONTO CITY	17 624038 4838788 W	2016-06 7091						7268825 (Z238892) A	
TORONTO CITY	17 623681 4838835 W	2016-05 6032	2			МО	0032 8	7270452 (Z206941) A202413	BRWN SAND SILT SOFT 0005 GREY SILT GRVL SOFT 0030 BRWN SAND SILT SOFT 0040
TORONTO CITY	17 623658 4838824 W	2016-05 6032	2			MO	0037 10	7270453 (Z206940) A202412	BRWN SAND SILT SOFT 0005 GREY SILT WDFR SOFT 0040 BRWN SAND SILT HARD 0047
TORONTO CITY	17 623616 4838767 W	2017-04 7215						7287672 (C37450) A218557 P	
TORONTO CITY	17 623921 4838871 W	2004-07 7230	1.97			NU	0010 10	6928284 (Z18304) A015017	BRWN FILL LOOS 0003 BRWN SILT SAND CLAY 0009 BRWN SAND SILT DNSE 0022
TORONTO CITY	17 623705 4838752 W	2008-03 7147	1.99	FR 0005	///:	NU		7103238 (Z77700) A056432	GREY GRVL 0001 BRWN FILL SAND CLAY 0002 BRWN FILL CLAY SAND 0008 BRWN FILL 0012 BRWN SAND 0015
YORK BOROUGH	17 623874 4839299 W	2013-02 7241	2			MT	0010 10	7198116 (Z165495) A117568	BRWN SAND SILT 0012 GREY SILT 0020
YORK BOROUGH	17 623836 4838927 W	2013-01 7241	2			MT	0020 10	7196155 (Z165750) A143667	BRWN FILL 0013 BRWN TILL ROCK 0022 BRWN SAND 0030
YORK BOROUGH	17 623650 4838849 W	2012-03 1663	5 5	UT	31/76/13/72:	ТН	0070 12	7193054 (Z161036) A116171	BRWN FILL 0032 BRWN SAND GRVL CLAY 0053 GREY FSND 0057 GREY CLAY 0059 GREY FSND 0063 GREY SAND CLAY SLTY 0068 GREY CLAY 0072 GREY SAND SLTY 0076 GREY CLAY SILT 0093
YORK BOROUGH	17 623838 4838729 W	2012-10 7241	2.04			MT	0010 10	7190937 (Z157108) A120904	BRWN FILL SAND LOOS 0002 BRWN SAND SILT DNSE 0010 GREY SAND SILT DNSE 0020
YORK BOROUGH	17 623817 4838718 W	2012-10 7241	2.04			MT	0010 10	7190936 (Z157107) A120906	BRWN FILL SAND LOOS 0002 BRWN SAND SILT DNSE 0010 GREY SAND SILT DNSE 0020

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
YORK BOROUGH	17 623569 4839205 W	2012-08 7241	2			MT	0012 10	7187770 (Z157147) A109842	BRWN FILL SAND SOFT 0005 BRWN SILT SAND 0020 GREY SAND SILT WBRG 0022
YORK BOROUGH	17 623618 4839371 W	2012-08 7241	2			MT	0012 10	7187769 (Z156817) A137025	BRWN FILL 0005 BRWN SILT SAND 0017 GREY SAND SILT 0022
YORK BOROUGH	17 623598 4839380 W	2012-08 7241	2				0012 10	7187768 (Z156819) A137024	BRWN FILL 0005 BRWN TILL SILT HARD 0017 GREY SAND SILT 0022
YORK BOROUGH	17 623622 4839338 W	2012-06 7241	1.25			MT	0009 10	7185263 (Z152570) A109718	BLCK 0000 BRWN SAND GRVL LOOS 0001 BRWN SILT CLAY DNSE 0008 BRWN SILT SAND DNSE 0019
YORK BOROUGH	17 623641 4839324 W	2012-06 7241	1.25			MT	0008 10	7185264 (Z150757) A109717	BLCK 0000 BRWN SAND GRVL LOOS 0001 BRWN SILT CLAY DNSE 0008 BRWN SILT SAND DNSE 0018
YORK BOROUGH	17 624218 4839060 W	2013-11 7241	2			MT	0010 10	7213509 (Z181352) A157942	BRWN GRVL SAND FILL 0004 BRWN SAND ROCK 0012 BRWN SILT SAND 0020
YORK BOROUGH	17 623814 4838794 W	2012-04 6032	2 2 2			MO	0030 100035 10	7185171 (Z131710) A106829	BRWN SAND FILL HARD 0030 BRWN SAND FILL HARD 0030 BRWN SAND FILL HARD 0035
YORK BOROUGH	17 624228 4839050 W	2012-06 7075	1.87			MO	0030 10	7184732 (Z144493) A105952	GREY TILL SAND LOOS 0012 BRWN TILL STNS SAND 0020 BRWN SILT SAND DNSE 0035 BRWN SAND FSND DNSE 0040
YORK BOROUGH	17 624224 4839068 W	2012-06 7075	1.12			MO	0030 10	7184733 (Z144492) A105952	BRWN FILL STNS SAND 0008 BRWN TILL STNS SOFT 0020 BRWN SILT SAND DNSE 0035 BRWN SAND FSND DNSE 0040
YORK BOROUGH	17 623760 4838844 W	2012-02 6032						7185116 (M01940) A116448 P	
YORK BOROUGH	17 623628 4839312 W	2012-06 7241	1.20			MT	0010 10	7185265 (Z150756) A109716	BLCK 0000 BRWN SAND GRVL LOOS 0001 BRWN SILT CLAY DNSE 0008 BRWN SILT SAND DNSE 0020
YORK BOROUGH	17 624214 4839067 W	2013-11 7241	2			MT	0010 10	7213511 (Z181347) A155717	BRWN GRVL SAND FILL 0003 BRWN SAND ROCK 0012 BRWN SILT SAND 0020
YORK BOROUGH	17 623571 4838814 W	2014-01 1413	6.25	UT 0056 UT 0062 UT 0077	39/75/5/2:30	TH DE	0051 5 0057 5 0072 5	7219018 (Z180082) A144311	GREY CLAY STNS HARD 0020 GREY CLAY HARD 0034 BRWN SAND SILT 0052 GREY SAND SILT 0069 GREY CLAY SOFT 0071 GREY SAND 0077 GREY CLAY SOFT 0080
YORK BOROUGH	17 623833 4838928 W	2013-08 7230						7218623 (C25583) A151441 P	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
YORK BOROUGH	17 623836 4838922 W	2013-11 7247	2	UT 0037	///:	MT	0065 5	7217590 (Z176683) A152953	BRWN SILT CLAY 0010 BRWN SILT CLAY DNSE 0030 GREY SAND SILT DNSE 0070
YORK BOROUGH	17 623819 4839275 W	2013-12 7241	0.75			MT	0009 10	7215096 (Z183008) A159163	BRWN SAND DRY 0003 GREY SAND CLAY 0011 GREY SILT SAND 0019
YORK BOROUGH	17 623721 4838895 W	2013-12 7472	2.04			МО	0030 10	7214563 (Z183805) A159925	BRWN FILL LOAM LOOS 0010 BRWN FSND SILT PCKD 0030 BRWN FSND PCKD 0040
YORK BOROUGH	17 623736 4838863 W	2013-12 7472	2.04			МО	0030 10	7214562 (Z183804) A159926	BRWN FILL LOAM LOOS 0010 BRWN FSND SILT PCKD 0030 BRWN FSND PCKD 0040
YORK BOROUGH	17 623547 4838587 W	2013-08 6964						7211339 (C21852) _MULTI_TAG P	
YORK BOROUGH	17 623757 4838861 W	7341						7213820 (M07455) A101197 P	
YORK BOROUGH	17 623892 4839289 W	2013-02 7241	2			MT		7198117 (Z165496) A117566	BRWN SAND SILT 0015 GREY SILT 0022
YORK BOROUGH	17 624164 4839029 W	2013-11 7241	2			MT	0010 10	7213510 (Z181353) A157828	BLCK 0000 BRWN SAND GRVL FILL 0003 BRWN SAND SILT LOOS 0010 GREY SAND SILT LOOS 0020
YORK BOROUGH	17 623690 4838762 W	2012-02 7075	2			МО	0060 5	7177915 (Z136070) A120180	BRWN FILL SAND GRVL 0010 BRWN SAND GRVL DNSE 0015 BRWN SILT GRVL CLAY 0040 BRWN SAND GRVL CLAY 0050 BRWN SAND SILT CLAY 0055 GREY SILT GRVL SAND 0060 GREY SAND SILT GRVL 0075
YORK BOROUGH	17 623562 4838792 W	2013-05 7215						7211402 (C22774) A145007 P	
YORK BOROUGH	17 623551 4838870 W	2012-03 7075	2			МО	0045 5	7183107 (Z122907) A127579	GREY SILT SAND GRVL 0015 GREY SILT GRVL SAND 0035 GREY SAND GRVL CLAY 0040 GREY SAND GRVL CLAY 0049 0164
YORK BOROUGH	17 623412 4838782 W	2013-08 6964						7211338 (C21853) _MULTI_TAG P	
YORK BOROUGH	17 623866 4839293 W	2013-02 7241	2			MT	0013 12	7198118 (Z165494) A117567	BRWN SAND SILT 0015 GREY SILT 0025
YORK BOROUGH	17 623767 4838892 W	2013-12 7472	2.04			МО	0040 10	7214561 (Z183803) A159927	BRWN FILL SAND LOOS 0010 BRWN FSND SILT PCKD 0040 BRWN FSND SILT PCKD 0050

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
YORK BOROUGH	17 623845 4838781 W	2010-01 7147	1.25					7150712 (Z112266) A092955	GREY 0001 BLUE SAND 0012 BRWN SILT SAND 0019
YORK BOROUGH	17 624223 4839054 W	2011-10 7075	2			МО	0075 10	7177977 (Z136065) A120189	BRWN SAND GRVL SILT 0048 GREY SAND 0085
YORK BOROUGH	17 623864 4839279 W	2011-10 7241	2.04			MT	0020 5	7170710 (Z131024) A116619	BRWN FILL GRVL LOOS 0002 BRWN SILT CLAY DNSE 0015 GREY SILT CLAY DNSE 0020 GREY SILT CLAY WBRG 0025
YORK BOROUGH	17 623862 4839231 W	2011-10 7241	2			MT	0020 5	7170709 (Z134963) A118761	BLCK 0000 BRWN SAND GRVL LOOS 0002 GREY 0002 BRWN SILT SAND LOOS 0013 GREY SILT SAND LOOS 0025
YORK BOROUGH	17 623552 4838802 W	2010-10 7075	1.37			MT	0080 10	7156515 (Z110976) A045978	BLCK LOAM LOOS 0001 BRWN TILL SAND STNS 0020 BRWN SAND DNSE 0090
YORK BOROUGH	17 623739 4839112 W	2010-11 7215						7156213 (Z122216) A093039 A	
YORK BOROUGH	17 623634 4838819 W	2010-10 7075	2			ОТ		7154478 (Z110977) A105952	BLCK LOAM SOFT 0001 BRWN FILL STNS SOFT 0009 BRWN FILL SAND GRVL 0035 BRWN SAND DNSE 0135 GREY SAND SILT DNSE 0150
YORK BOROUGH	17 623864 4839279 W	2011-10 7241				MT		7170712 (Z131023) A120995	
YORK BOROUGH	17 623805 4838767 W	2010-08 7147	1.97	FR 0018				7150713 (Z112264) A092955	GREY 0001 BRWN SAND 0012 BRWN SILT SAND 0024
YORK BOROUGH	17 623416 4838753 W	2011-09 7472	2.13	UK 0039		МО	0079 10	7171141 (Z125953) A121872	BRWN SAND GRVL 0010 BRWN SILT CLAY 0020 GREY SAND CLAY 0046 GREY SILT SAND 0089
YORK BOROUGH	17 623845 4838770 W	2010-08 7147	1.97	FR 0010		МО		7150548 (M08105) A092955	BLCK 0001 BRWN SAND FILL 0008 BRWN SILT SAND 0020
YORK BOROUGH	17 623736 4839130 W	2009-11 7147	1.97	FR 0005		NU MO		7135256 (M08654) A093039	BLCK 0001 BRWN FILL 0001 BRWN SAND 0010 BRWN CLAY TILL 0018
YORK BOROUGH	17 623662 4839235 W	2008-11 7215	2			МО		7120232 (Z68013) A058910	BRWN SAND SAND 0035
YORK BOROUGH	17 623704 4839158 W	2006-07 6607	2.00	FR 0020			0015 10	6930586 (Z52289) A046445	BLUE SILT 0025

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
YORK BOROUGH	17 623469 4838889 W	2006-04 7147	1.25	0009		NU	0003 10	6930099 (Z46131) A025122	BLCK 0001 BRWN FILL 0001 BRWN SAND SLTY FILL 0013
YORK BOROUGH	17 623806 4838935 W	2005-11 6607	2.00				0010 15	6929667 (Z40306) A034583	BRWN SAND GRVL 0004 BRWN SILT SAND 0012 GREY SAND SILT 0018 GREY SAND 0025
YORK BOROUGH	17 623860 4838856 W	2010-08 7215	2 6			TH	0003 34	7152560 (Z121718) A103161	FILL GRVL CLAY 0002 BRWN SAND DRY 0020 BRWN SAND CLAY WBRG 0037
YORK BOROUGH	17 623819 4839275 W	2011-11 7241	1.25			MT	0001 4	7174716 (Z142599) A123815	BRWN SILT CLAY DNSE 0007
YORK BOROUGH	17 623567 4838810 W	2011-09 7230						7178585 (M10809) A119556 P	
YORK BOROUGH	17 623571 4838814 W	2014-01 1413	6.25	UT 0050 UT 0065 UT 0083	39/75/10/3:	TH DE	0045 5 0060 5 0078 5	7219019 (Z180081) A144311	GREY CLAY STNS HARD 0033 BRWN SAND SILT 0050 GREY SAND SILT 0065 GREY CLAY SOFT 0070 GREY SAND CLAY LYRD 0084 GREY CLAY SAND LYRD 0097 GREY CLAY DNSE 0100
YORK BOROUGH	17 624295 4839112 W	2011-11 7075	2			MO	0067 10	7177974 (Z136040) A120236	BRWN CLAY SAND DNSE 0010 BRWN SAND SILT DNSE 0020 BRWN SAND GRVL PORS 0035 BRWN SAND GRVL DNSE 0045 BRWN SAND SILT DNSE 0075 GREY SILT SAND HARD 0080
YORK BOROUGH	17 624227 4839045 W	2014-05 1413	5	UT 0078		DE	0038 40	7223793 (Z180123) _NO_TAG	BRWN CLAY PCKD 0036 BRWN SAND FSND 0069 GREY CLAY SAND LYRD 0078
YORK BOROUGH	17 623606 4838727 W	2012-01 7075	2			MO	0071 5	7177914 (Z136067) A120183	BRWN FILL SAND GRVL 0010 BRWN GRVL SILT HARD 0011 BRWN SILT GRVL DNSE 0020 BRWN SILT GRVL DNSE 0045 GREY SAND GRVL DNSE 0082
YORK BOROUGH	17 623595 4838812 W	2012-02 7075	2			MO	0095 5	7177912 (Z136068) A127573	BRWN SAND GRVL CLAY 0010 GREY FILL SILT GRVL 0030 GREY SILT GRVL CLAY 0040 GREY SILT GRVL CLAY 0100 GREY CLAY SILT SAND 0115
YORK BOROUGH	17 623871 4839283 W	2011-10 7241	2.04			MT	0020 5	7170711 (Z131025) A116620	BRWN FILL GRVL LOOS 0002 BRWN SILT CLAY DNSE 0015 GREY SILT CLAY DNSE 0020 GREY SILT CLAY WBRG 0025
YORK BOROUGH	17 623666 4838823 W	2011-09 1507						7175199 (M02704) A093535 P	
YORK BOROUGH	17 623658 4838861 W	2012-03 7075	2			МО	0110 5	7183103 (Z122898) A127576	GREY SAND GRVL CLAY 0010 GREY SILT GRVL SAND 0035 BRWN SAND GRVL CLAY 0050 GREY SAND GRVL CLAY 0095 GREY SILT GRVL SAND 0115 0377
YORK BOROUGH	17 624233 4839044 W	2011-10 7075	2			МО	0065 10	7173189 (Z125650) A108851	BRWN SAND GRVL SLTY 0050 BRWN SAND CLAY SLTY 0055 GREY SAND CLAY SLTY 0110

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
YORK BOROUGH	17 624216 4839042 W	2011-11 5459	6				0085 10	7173078 (Z141191) A124616	BRWN SAND FILL SOFT 0020 BRWN SAND DNSE 0027 BRWN SAND SILT SOFT 0045 GREY SILT SAND SOFT 0095
YORK BOROUGH	17 623910 4838909 W	2011-08 6607						7173046 (M10379) A115318 P	
YORK BOROUGH	17 623514 4838778 W	2011-10 7075	2			МО	0105 10	7171541 (Z125648) A120196	BRWN SAND SLTY GRVL 0055 GREY SAND SLTY CLAY 0092 GREY CLAY SLTY SAND 0132
YORK BOROUGH	17 623979 4838937 W	2011-10 7075	2			МО	0070 20	7171535 (Z136020) A120200	BRWN SILT CLAY DRY 0020 BRWN SILT SAND GRVL 0050 GREY SAND SILT 0078 GREY SILT SNDY 0085 GREY SILT SAND 0090
YORK BOROUGH	17 623699 4838844 W	2011-09 7472	2.13	UK 0039		МО	0108 10	7171142 (Z125954) A121873	BRWN SAND LOAM 0005 GREY SAND GRVL 0049 GREY SAND SILT 0118
YORK BOROUGH	17 623754 4838848 W	2012-02 7075	2			МО	0065 5	7177911 (Z136069) A120207	BRWN SAND GRVL SILT 0010 BRWN GRVL SAND LOOS 0015 BRWN SILT GRVL DNSE 0040 BRWN SILT GRVL DNSE 0070 GREY GRVL SILT SAND 0075 GREY SILT GRVL DNSE 0082
YORK BOROUGH	17 624239 4839022 W	2015-10 6875	3.94	UT 0046		DE		7253875 (Z200182) A118562 A	
YORK BOROUGH	17 623657 4838807 W	2013-11 7341	4.30			DE	0022 2	7223744 (Z182234) A101181	BRWN SILT CLAY LOOS 0006 GREY SILT SAND LOOS 0009 GREY CLAY DNSE 0024
YORK BOROUGH	17 624227 4839045 W	2014-05 1413						7258072 (Z227309)	
YORK BOROUGH	17 624242 4839041 W	2014-05 1413						7258071 (Z227310)	
YORK BOROUGH	17 624226 4839037 W	2015-10 6875						7258030 (Z226750)	
YORK BOROUGH	17 624240 4839033 W	2015-11 6875						7258029 (Z226751)	
YORK BOROUGH	17 624236 4839040 W	2015-10 6875						7258028 (Z226749)	
YORK BOROUGH	17 623867 4838920 W	2016-02 7201	2			МО	0050 10	7258782 (Z223291) A	
YORK BOROUGH	17 623840 4839215 W	2014-02 7215						7255817 (C24746) A155208 P	
YORK BOROUGH	17 623882 4838905 W	2016-02 7201	2			МО	0130 10	7258783 (Z223289) A	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
YORK BOROUGH	17 624228 4839029 W	2015-09 6875	3.94	UT 0046		DE		7253874 (Z200184) A118625 A	
YORK BOROUGH	17 624243 4839024 W	2015-09 6875	3.94	UT 0046		DE		7253873 (Z200183) A118562 A	
YORK BOROUGH	17 624232 4839020 W	2015-09 6875	4.92	UT 0046		DE		7253872 (Z200161) A118642 A	
YORK BOROUGH	17 624238 4839040 W	2015-10 6875	4.92	UT 0046		DE		7253871 (Z200162) A	
YORK BOROUGH	17 624240 4839033 W	2015-11 6875	3.94	UT 0046		MO		7253870 (Z200068) A	
YORK BOROUGH	17 624226 4839037 W	2015-10 6875	12.5	UT 0014				7253869 (Z200070) A	
YORK BOROUGH	17 623827 4838927 W	2015-07 7247	2	UT 0045		MT	0065 5	7255962 (Z214048) A174020	BRWN SILT SNDY FILL 0005 BRWN SILT SAND CLAY 0025 GREY SAND SLTY CLAY 0070
YORK BOROUGH	17 623788 4838915 W	2015-12 7464						7262452 (Z220912) A164027 A	
YORK BOROUGH	17 623388 4839357 W	2017-06 7241	2			тн мо	0012 10	7291307 (Z261151) A208777	BRWN CLAY SILT 0010 GREY CLAY SILT 0022
YORK BOROUGH	17 623399 4839367 W	2017-06 7241	1.25			ТН МО	0013 10	7291305 (Z261154) A208773	GREY CMTD HARD 0000 BRWN FILL LOOS 0002 BRWN CLAY SAND LOOS 0008 GREY CLAY HARD 0015 GREY SILT SAND HARD 0023
YORK BOROUGH	17 623786 4838904 W	2016-11 7247	2	UT 0045		тн мо	0060 10	7287939 (Z254698) A202310	BRWN FILL SAND DNSE 0016 BRWN SAND SILT DNSE 0070
YORK BOROUGH	17 624238 4839055 W	2016-11 7215						7285804 (C36088) A218484 P	
YORK BOROUGH	17 623839 4838924 W	2016-11 7464						7281177 (C35055) A208239 P	
YORK BOROUGH	17 624038 4838759 W	2016-06 7091						7268824 (Z238893) A	
YORK BOROUGH	17 624234 4839044 W	2014-05 1413						7258073 (Z227311)	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
YORK BOROUGH	17 623664 4838806 W	2016-03 7238	2			MO	0155 10	7263145 (Z229353) A185394	BRWN SILT SAND FILL 0035 GREY SILT SAND 0080 GREY CLAY SILT 0165
YORK BOROUGH	17 623966 4838939 W	2015-11 6875	5			DE		7253866 (Z226763) A118559 A	
YORK BOROUGH	17 623796 4838901 W	2015-12 7464						7262451 (Z220913) A164026 A	
YORK BOROUGH	17 623452 4838733 W	2016-03 7464	1.97			MO	0013 10	7262447 (Z220986) A192013	SAND 0010 SAND 0023
YORK BOROUGH	17 623466 4838759 W	2016-03 7464	1.97			MO	0013 10	7262446 (Z220988) A203888	SAND 0010 SAND 0023
YORK BOROUGH	17 623442 4838755 W	2016-03 7464	1.97			MO	0013 10	7262445 (Z220987) A203889	SAND 0010 SAND 0023
YORK BOROUGH	17 623804 4838904 W	2016-03 7201						7261286 (Z223261) A	
YORK BOROUGH	17 623811 4838908 W	2016-03 7201						7261284 (Z223262) A	
YORK BOROUGH	17 623800 4838920 W	2016-04 7247	2	UT 0035		MT	0035 10	7266056 (Z226676) A199721	BRWN SAND GRVL SILT 0002 BRWN SAND CLAY GRVL 0015 BRWN SAND SILT GRVL 0020 BRWN SAND SILT CLAY 0033 BRWN SAND GRVL DNSE 0045
YORK BOROUGH	17 623805 4838904 W	2014-06 7320	2	UT 0038		MT	0034 10	7226179 (Z187414) A164026	BRWN SAND FILL 0005 BRWN SAND 0035 BRWN SILT SAND 0045
YORK BOROUGH	17 623567 4838811 W	2012-04 6032						7231483 (C02954) A116448 P	
YORK BOROUGH	17 623836 4838918 W	2012-03 7147						7231420 (C12940) A107239 P	
YORK BOROUGH	17 623571 4838814 W	2014-05 6875				DE		7230786 (Z189463) A144311 A	
YORK BOROUGH	17 624257 4839027 W	2014-06 6875	5	UT 0038	//15/:	DE	0042 36	7230785 (Z189451) A186412	GREY HARD 0002 BRWN CLAY STNS 0033 BRWN SAND PCKD 0065 GREY CLAY LYRD 0128
YORK BOROUGH	17 623564 4838815 W	2014-05 6875				DE		7230783 (Z189454) A	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
YORK BOROUGH	17 624235 4839018 W	2014-06 6875	5	UT 0038	//10/:	DE	0042 36	7230779 (Z189450) A118562	GREY HARD 0003 BRWN CLAY STNS 0035 BRWN SAND PCKD 0068 GREY CLAY LYRD HARD 0078
YORK BOROUGH	17 623966 4838942 W	2015-11 6875	5			DE		7253868 (Z226760) A118644 A	
YORK BOROUGH	17 623905 4838906 W	2014-06 7320	2	UT 0038		MT	0034 10	7226180 (Z187413) A164027	BRWN SAND FILL 0005 BRWN SAND 0035 BRWN SILT SAND 0045
YORK BOROUGH	17 623726 4838885 W	2014-12 7215						7238354 (C27949) P	
YORK BOROUGH	17 624177 4839013 W	2014-08 7201	2			МО		7225867 (Z187581) A	
YORK BOROUGH	17 624242 4839041 W	2014-05 1413	4	UT 0078		DE	0038 400038 40	7223805 (Z180122) _NO_TAG	BRWN CLAY PCKD 0035 BRWN SAND MSND 0068 GREY CLAY SAND LYRD 0078
YORK BOROUGH	17 624234 4839044 W	2014-05 1413	5	UT 0068		DE	0037 40	7223803 (Z180107) _NO_TAG	GREY HARD 0003 BRWN CLAY HARD 0035 BRWN SAND PCKD 0068 GREY CLAY LYRD 0078
YORK BOROUGH	17 623382 4839367 W	2017-06 7241	2			TH MO	0012 10	7291308 (Z261152) A208778	BRWN SILT CLAY 0010 GREY SILT CLAY 0020 BRWN SAND 0022
YORK BOROUGH	17 623700 4838827 W	2013-11 7341	4.30		///:	DE	0018 2	7223745 (Z1822334) A101195	BRWN CLAY SILT LOOS 0006 GREY SILT SAND LOOS 0009 GREY CLAY DNSE 0019
YORK BOROUGH	17 623582 4838804 W	2014-03 1663	5 5	UT		DE	0052 41	7220015 (Z185825) A146977	BRWN FILL 0030 GREY SAND CLAY SLTY 0073 GREY SAND SLTY 0078 GREY SAND CLAY LYRD 0093
YORK BOROUGH	17 623757 4838861 W	7341						7228273 (M07476) A101197 P	
YORK BOROUGH	17 623966 4838939 W	2015-07 6875	5	UT 0049		DE	0080 5 0035 45	7246646 (Z200142) A118559	GREY HARD 0005 GREY SILT SAND DNSE 0043 BRWN SAND SILT SOFT 0085
YORK BOROUGH	17 623575 4838826 W	2014-03 1663	5 5 8	UT		DE	0052 38	7220014 (Z185824) A146976	BRWN FILL 0035 GREY SAND CLAY SLTY 0073 GREY SAND SLTY 0078 GREY SAND CLAY LYRD 0093
YORK BOROUGH	17 623975 4838941 W	2015-11 6875	5			DE		7253865 (Z226762) A118560 A	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
YORK BOROUGH	17 623970 4838943 W	2015-11 6875	12.6			DE		7253773 (Z226769) A118553 A	
YORK BOROUGH	17 623970 4838943 W	2015-11 6875	5			DE		7253772 (Z226767) A118553 A	
YORK BOROUGH	17 623907 4838560 W	2015-08 7241	0.79			MT	0033 33	7248623 (Z216535) A186318	BRWN FILL GRVL LOOS 0007 BRWN SAND SILT DNSE 0033 GREY SAND SILT DNSE 0066
YORK BOROUGH	17 623916 4838499 W	2015-08 7241	0.79			MT	0026 33	7248622 (Z216534) A186319	BRWN FILL GRVL LOOS 0007 BRWN SAND SILT DNSE 0033 GREY SAND SILT DNSE 0059
YORK BOROUGH	17 623958 4838721 W	6875	5			DE	0055 51	7235124 (Z200232) A118553	GREY CLAY FSND HARD 0015 GREY SAND SLTY CLAY 0040 GREY CLAY FSND HARD 0070 BRWN SAND SLTY SOFT 0080 GREY CLAY FSND HARD 0090 BRWN SAND SOFT 0106
YORK BOROUGH	17 623975 4838941 W	2015-07 6875	5	UT 0049		DE	0035 450080 5	7246647 (Z200141) A118560	GREY HARD 0005 GREY SILT SAND DNSE 0043 BRWN SAND SILT SOFT 0085
YORK BOROUGH	17 623722 4838904 W	2014-10 7201	2			МО	0055 5	7236625 (Z196708) A170061	BRWN FILL GRVL 0010 BRWN TILL 0030 SAND SILT WBRG 0055
YORK BOROUGH	17 623964 4838989 W	2015-06 7437	2	0016		МО	0010 10	7244458 (Z202124) A183933	BLCK 0004 BRWN SAND SLTY FILL 0005 BRWN SILT SNDY TILL 0020
YORK BOROUGH	17 623980 4838946 W	2015-06 6875	5	UT 0059		DE	0035 50	7244371 (Z200131) A118645	GREY HARD 0005 GREY SILT SAND DNSE 0043 BRWN SAND SILT SOFT 0085
YORK BOROUGH	17 623966 4838942 W	2015-06 6875	5	UT 0059		DE	0035 50	7244370 (Z200130) A118644	GREY HARD 0005 GREY SILT SAND DNSE 0043 BRWN SAND SILT SOFT 0085
YORK BOROUGH	17 624239 4839030 W	2015-05 6875	3.94	UT 0046		DE	0052 20	7242616 (Z200180) A118562	GREY SILT SAND CLAY 0020 GREY SAND SILT CLAY 0072
YORK BOROUGH	17 624209 4839004 W	2015-05 6875	3.94	UT 0046		DE	0052 20	7242615 (Z200181) A118625	GREY SILT SAND CLAY 0020 GREY SAND SILT CLAY 0072
YORK BOROUGH	17 623947 4838452 W	2015-03 7215						7241094 (C27826) A178693 P	
YORK BOROUGH	17 623980 4838946 W	2015-11 6875	5			DE		7253867 (Z226761) A118645 A	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
YORK BOROUGH	17 623928 4838506 W	2015-08 7241	0.79			MT	0033 33	7248621 (Z216533) A188724	BRWN FILL GRVL LOOS 0007 BRWN SAND SILT DNSE 0033 GREY SAND SILT DNSE 0066

Notes:

UTM: UTM in Zone, Easting, Northing and Datum is NAD83; L: UTM estimated from Centroid of Lot; W: UTM not from Lot Centroid DATE CNTR: Date Work Completedand Well Contractor Licence Number

CASING DIA: .Casing diameter in inches

WATER: Unit of Depth in Fee. See Table 4 for Meaning of Code

PUMP TEST: Static Water Level in Feet / Water Level After Pumping in Feet / Pump Test Rate in GPM / Pump Test Duration in Hour : Minutes

WELL USE: See Table 3 for Meaning of Code SCREEN: Screen Depth and Length in feet

WELL: WEL (AUDIT#) Well Tag . A: Abandonment; P: Partial Data Entry Only

FORMATION: See Table 1 and 2 for Meaning of Code

1. Core Material and Descriptive terms

Code Description	Code Description	Code Description	Code Description	Code Description
BLDR BOULDERS	FCRD FRACTURED	IRFM IRON FORMATION	PORS POROUS	SOFT SOFT
BSLT BASALT	FGRD FINE-GRAINED	LIMY LIMY	PRDG PREVIOUSLY DUG	SPST SOAPSTONE
CGRD COARSE-GRAINED	FGVL FINE GRAVEL	LMSN LIMESTONE	PRDR PREV. DRILLED	STKY STICKY
CGVL COARSE GRAVEL	FILL FILL	LOAM TOPSOIL	QRTZ QUARTZITE	STNS STONES
CHRT CHERT	FLDS FELDSPAR	LOOS LOOSE	QSND QUICKSAND	STNY STONEY
CLAY CLAY	FLNT FLINT	LTCL LIGHT-COLOURED	QTZ QUARTZ	THIK THICK
CLN CLEAN	FOSS FOSILIFEROUS	LYRD LAYERED	ROCK ROCK	THIN THIN
CLYY CLAYEY	FSND FINE SAND	MARL MARL	SAND SAND	TILL TILL
CMTD CEMENTED	GNIS GNEISS	MGRD MEDIUM-GRAINED	SHLE SHALE	UNKN UNKNOWN TYPE
CONG CONGLOMERATE	GRNT GRANITE	MGVL MEDIUM GRAVEL	SHLY SHALY	VERY VERY
CRYS CRYSTALLINE	GRSN GREENSTONE	MRBL MARBLE	SHRP SHARP	WBRG WATER-BEARING
CSND COARSE SAND	GRVL GRAVEL	MSND MEDIUM SAND	SHST SCHIST	WDFR WOOD FRAGMENTS
DKCL DARK-COLOURED	GRWK GREYWACKE	MUCK MUCK	SILT SILT	WTHD WEATHERED
DLMT DOLOMITE	GVLY GRAVELLY	OBDN OVERBURDEN	SLTE SLATE	
DNSE DENSE	GYPS GYPSUM	PCKD PACKED	SLTY SILTY	
DRTY DIRTY	HARD HARD	PEAT PEAT	SNDS SANDSTONE	
DRY DRY	HPAN HARDPAN	PGVL PEA GRAVEL	SNDY SANDYOAPSTONE	

2. Core Color

3. Well Use

WHIT WHITE DO Domestic OT Other GREY GREY ST Livestock TH Test Hole BLUE BLUE IR Irrigation DE Dewatering GREN GREEN IN Industrial MO Monitoring YLLW YELLOW CO Commercial MT Monitoring TestHol BRWN BROWN MN Municipal RED RED PS Public BLCK BLACK AC Cooling And A/C BLGY BLUE-GREY NU Not Used	Code	Description	Cod	de Description	Cod	de Description
BLUE BLUE IR Irrigation DE Dewatering GREN GREEN IN Industrial MO Monitoring YLLW YELLOW CO Commercial MT Monitoring TestHol BRWN BROWN MN Municipal RED RED PS Public BLCK BLACK AC Cooling And A/C	WHIT	WHITE	DO	Domestic	OT	Other
GREN GREEN IN Industrial MO Monitoring YLLW YELLOW CO Commercial MT Monitoring TestHol BRWN BROWN MN Municipal RED RED PS Public BLCK BLACK AC Cooling And A/C	GREY	GREY	ST	Livestock	TH	Test Hole
YLLW YELLOW CO Commercial MT Monitoring TestHol BRWN BROWN MN Municipal RED RED PS Public BLCK BLACK AC Cooling And A/C	BLUE	BLUE	IR	Irrigation	DE	Dewatering
BRWN BROWN MN Municipal RED RED PS Public BLCK BLACK AC Cooling And A/C	GREN	GREEN	IN	Industrial	MO	Monitoring
RED RED PS Public BLACK AC Cooling And A/C	YLLW	YELLOW	CO	Commercial	MT	Monitoring TestHole
BLCK BLACK AC Cooling And A/C	BRWN	BROWN	MN	Municipal		
	RED	RED	PS	Public		
BLGY BLUE-GREY NU Not Used	BLCK	BLACK	AC	Cooling And A	/C	
	BLGY	BLUE-GREY	NU	Not Used		

4. Water Detail

Code	Description	Code	Description
FR	Fresh	GS	Gas
SA	Salty	IR	Iron
SU	Sulphur		
MN	Mineral		
UK	Unknown		

HYDROLOGICAL REVIEW SUMMARY

The form is to be completed by the Professional that prepared the Hydrological Review.

Use of the form by the City of Toronto is not to be construed as verification of engineering/hydrological content.

Refer to the Terms of Reference, Hydrological Review: Link to Terms of Reference Hydrological Review

For City Staff Use Only:	
Name of ECS Case Manager (Please	
print)	
Date Review Summary provided to	
to TW, EM&P	

IF ANY OF THE REQUIREMENTS LISTED BELOW HAVE NOT BEEN INLCUDED IN THE HYDROLOGICAL REVIEW, THE REVIEW WILL BE CONSIDERED INCOMPLETE.

THE GREY SHADED BOXES WILL REQUIRE A CONSISTANCY CHECK BY THE ECS CASE MANAGER.

Summary of Key Information:

SITE INFO	RMATION	Page # & Section # of Review	Review Includes this Information City Staff (Check)
Site Address	2343 Eglinton Avenue West, Toronto, Ontario	Pg. 1, Sec. 1.0	
Postal Code	M6E 2L6	Pg. 1, Sec. 1.0	
Property Owner (on request for comments memo)	1764174 Ontario Inc.	Pg. 1, Sec. 1.0	
Proposed description of the project (if applicable) (point towers, number of podiums)	2 towers (6 and 42-storeys) atop a shared 6-storey podium	Pg. 2, Sec. 2.2	
Land Use	Commercial residential	Pg. 1, Sec. 2.1	
(ex. commercial, residential, mixed, institutional, industrial)			
Number of below grade levels for the proposed structure	2	Pg. 2, Sec. 2.2	
HYDROLOGI	CAL REVIEW INFORMATION		
Date Hydrological Review was prepared:	31 January 2025	Title page	
Who Performed the Hydrological Review (Consulting Firm)	Groundwater Environmental Management Services Inc.		
Name of Author of Hydrological Review	Logan McNabb and Dan Menard	Pg. 15, Sec. 11.0	

SITE INFOR	RMATION	Page # & Section # of Review	Review Includes this Information City Staff (Check)
Check the directories on the website for Professional Geoscientists and/or Professional Engineers of Ontario been checked to ensure that the Hydrological Report has been prepared by a qualified person who is a licensed Professional Geoscientist as set out in the Professional Geoscientist Act of Ontario or a Professional Engineer? PEO: Professional Engineers of Ontario APGO: Association of Professional Geoscientists of Ontario		N/A	
Has the Hydrological Review been prepared in accordance with all the following: Ontario Water Resources Act Ontario Regulation 387/04 Toronto Municipal Code Chapter 681-Sewers	Yes.	Pg. 1, Sec. 1.0	
		Page # & Section # of every occurrence in the Review	Review Includes this Information City Staff (Check)

SITE INFORMATION		Page # & Section # of Review	Review Includes this Information City Staff (Check)
Total Volume (L/day) Short Term Discharge of groundwater (construction dewatering) with safety factor included	278,502 L/day What safety factor was used? 1.5	Pg. 9, Sec. 5.2	
Total Volume (L/day) Short Term Discharge of groundwater (construction dewatering) without safety factor included	185,668 L/day	Pg. 9, Sec. 5.2	
Total Volume (L/day) Long Term drainage of groundwater (from foundation drainage, weeping tiles, sub slab drainage) with safety factor included If the development is part of a multiple tower complex, include total volume for each separate tower	27,878 L/day What safety factor was used? 1.2	Pg. 9, Sec. 5.3	
List the nearest surface water (river, creek, lake)	Humber River, 3.6 km west of the site	Pg. 1, Sec. 2.1	

SITE INFO	Page # & Section # of Review	Review Includes this Information City Staff (Check)	
Lowest basement elevation	150.20 metres above sea level (masl)	Pg. 8, Sec. 5.1	
Foundation elevation	149.20 masl	Pg. 1, Sec. 1.0	
Ground elevation	158.64 masl	Pg. 8, Sec. 5.1	
STUDY AREA MAP		Page # & Section # of every occurrence in the Review	Review Includes this Information City Staff (Check)
Study area map(s) have been included in the report.	X¥es	Pg. 17, 19, 21 Figure 1, 2, 3	N/A
Study area map(s) been prepared according to the Hydrological Review Terms of Reference.	X Yes	Pg. 17, 19, 21 Figure 1, 2, 3	N/A
WATER LEVEL AND WELLS		Page # & Section # of every occurrence	Review Includes this Information (City Staff Initial)

SITE INFORMATION		Page # & Section # of Review	Review Includes this Information City Staff (Check)
		in the Review	
The groundwater level has been monitored using all wells located on site (within property boundary).	Yes.	Pg. 4-6, Sec. 4.3	
The static water level measurements have been monitored at all monitoring wells for a minimum of 3 months with samples taken every 2 weeks for a minimum of 6 samples.	Yes.	Pg. 4-6, Sec. 4.3	
The intent is for the qualified professional to use professional judgement to estimate the seasonally high groundwater level.			
All water levels in the wells have been measured with respect to masl.	Yes.	Pg. 4-6, Sec. 4.3	
A table of geology/soil stratigraphy for the property has been included.	Yes.	Pg. 4, Sec. 4.2	
GEOLOGY AND PHYSICAL HYDROLOGY		Page # & Section # of every occurrence in the Review	Review Includes this Information (City Staff Initial)
The review has made reference to the soil materials including thickness, composition and texture, and bedrock environments.	Yes.	Pg. 4, Sec. 4.2	
Key aquifers and the site's proximity to nearby surface water has been identified.	※ Yes	Pg. 1, Sec. 2.1	N/A

SITE INFORMATION		Page # & Section # of Review	Review Includes this Information City Staff (Check)
PUMP TEST/SLUG TEST/DRAWDOWN ANALYSIS		Page # & Section # of every occurrence in the Review	Review Includes this Information City Staff (Check)
A summary of the pumping test data and analysis is included in the review.	N/A	N/A	
The pump test been carried out for at least 24 hours if possible. If not, has a slug test been conducted?	Pumping test not conducted. Slug testing on two wells was conducted.	Pg. 6, Sec. 4.4	
Have the monitoring well(s) have been monitored using digital devices? If yes how frequently?	Yes.	Pg. 2, Sec. 3.2	
If a slug or pump test has been conducted has the static groundwater level been monitored at all monitoring well(s) multiple times to measure recovery? -prior to the slug or pumping test(s)? -post slug or pumping test(s)?	☆ Yes	Pg. 2, Sec. 3.2	N/A
The above noted slug or pump tests have been included in the report.	☆ Yes	Appendix C	
WATER QUALITY		Page # & Section # of every occurrence in the Review	Review Includes this Information City Staff (Check)

SITE INFORMATION		Page # & Section # of Review	Review Includes this Information City Staff (Check)
The report includes baseline water quality samples from a laboratory. The water quality must be analyzed for all parameters listed in Tables 1 and 2 of Chapter 681 Sewers of the Toronto Municipal Code (found in Appendix A) and the samples must have to be taken unfiltered within 9 months of the date of submission.	Yes.	Appendix D	
The water quality data templates in Appendix A have been completed for each sample taken for both sanitary/combined and storm sewer limits.	Yes.		
Qualified professional to list all sample parameters that have violated the Bylaw limits for each sample taken for the sanitary/combined Bylaw limits If there are any sample parameter Exceedances the groundwater can't be discharged as is.	Benzene and Toluene exceed sanitary/combined Bylaw limits.	Appendix D	
Qualified professional to list all sample parameters that have violated the Bylaw limits for each sample taken for the storm Bylaw limits. If there are any sample parameter exceedances the groundwater can't be discharged as is.	Phenols-4AAP, Total Suspended Solids, Total Manganese, Total PAHs, Benzene, Chloroform, Ethylbenzene, Toluene, and Total Xylenes exceed storm Bylaw limits.	Appendix D	
The water quality samples have been analyzed by a Canadian laboratory accredited and licensed by Standards Council of Canada and/or Canadian Association for Laboratory Accreditation.	⊠ Yes		N/A

SITE INFORMATION			Review Includes this Information City Staff (Check)
List of Canadian accredited laboratories:			
Standards Council of Canada			
A chain of custody record for the samples is included with the report.	Yes.	Appendix D	
Has the chain of custody reference any filtered sample? If yes, the report has to be amended and re-submitted to include only non-filtered samples.	No.		
List any of the sample parameters that exceed the Bylaw limits with the reporting detection limit (RDL) included.	Total PAHs exceed the storm sewer criteria with the detection limit included.	Appendix D	
A true copy of the Certificate of Analysis report, is included with the report.	Yes.	Appendix D	
EVALUATION OF IMPACT		Page # & Section # of every occurrence in the Review	Review Includes this Information City Staff (Check)
Does the report recommend a back-up system or relief safety valve(s)?	◯ Yes 🎇 No		
Does the associated Geotechnical report recommend a back-up system or relief safety valve(s)?	◯ Yes 🔯 No		
The taking and discharging of groundwater on site has been analyzed to ensure that no negative	∕ ¥Yes	Pg. 10, Sec. 6.3	N/A

HYDROLOGICAL REVIEW SUMMARY

SITE INFOR	RMATION	Page # & Section # of Review	Review Includes this Information City Staff (Check)
impacts will occur to: the City sewage works in			
terms of quality and quantity (including existing			
infrastructure), the natural environment, and			
settlement issues.			
Has it been determined that there will be a	○ Yes		N/A
negative impact to the natural environment, City	If yes, identify impact:		
sewage works, or surrounding properties has the			
study identified the following: the extent of the	🙀 No		
negative impact, the detail of the precondition	· ·		
state of all the infrastructure, City sewage works,			
and natural environment within the effected zone			
and the proposed remediation and monitoring			
plan?			

Summary of Additional Information and Key Items (if applicable):

HYDROLOGICAL REVIEW SUMMARY

Appendix A:

SANITARY/COMBINED Sample Location: MW4

Inorganics		Sample Result	Sample Result with upper RDL included	
Parameter	mg/L	_		<u>ug/L</u>
BOD	300	3 mg/L		300,000
Fluoride	10	0.55 mg/L		10,000
TKN	100	3.0 mg/L		100,000
рН	6.0 - 11.5	7.81		6.0 - 11.5
Phenolics 4AAP	1	0.0033 mg/L		1,000
TSS	350	31 mg/L		350,000
Total Cyanide	2	ND	0.0050 mg/L	2,000
Metals				
Chromium Hexavalent	2	ND	0.50 ug/L	2,000
Mercury	0.01	ND	0.00010 mg/L	10
Total Aluminum	50	390 ug/L		50,000
Total Antimony	5	ND	0.50 ug/L	5,000
Total Arsenic	1	ND	1.0 ug/L	1,000
Total Cadmium	0.7	ND	0.090 ug/L	700
Total Chromium	4	ND	5.0 ug/L	4,000
Total Cobalt	5	0.74 ug/L		5,000
Total Copper	2	11 ug/L		2,000
Total Lead	1	0.88 ug/L		1,000
Total Manganese	5	170 ug/L		5,000
Total Molybdenum	5	4.0 ug/L		5,000
Total Nickel	2	2.5 ug/L		2,000
Total Phosphorus	10	ND	100 ug/L	10,000
Total Selenium	1	ND	2.0 ug/L	1,000
Total Silver	5	ND	0.090 ug/L	5,000
Total Tin	5	11 ug/L		5,000
Total Titanium	5	18 ug/L		5,000
Total Zinc	2	15 ug/L		2,000
Petroleum Hydrocarbons				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Animal/Vegetable Oil & Grease	150	ND	5.0 mg/L	150,000
Mineral/Synthetic Oil & Grease	15	ND	5.0 mg/L	15,000

HYDROLOGICAL REVIEW SUMMARY

Volatile Organics		Sample Result	Sample Result with upper RDL included	
<u>Parameter</u>	mg/L	_		<u>ug/L</u>
Benzene	0.01	510 ug/L		10
Chloroform	0.04	5.7 ug/L		40
1,2-Dichlorobenzene	0.05	ND	0.40 ug/L	50
1,4-Dichlorobenzene	0.08	ND	0.40 ug/L	80
Cis-1,2-Dichloroethylene	4	ND	0.50 ug/L	4,000
Trans-1,3-Dichloropropylene	0.14	ND	0.40 ug/L	140
Ethyl Benzene	0.16	130 ug/L		160
Methylene Chloride	2	ND	2.0 ug/L	2,000
1,1,2,2-Tetrachloroethane	1.4	ND	0.40 ug/L	1,400
Tetrachloroethylene	1	ND	0.20 ug/L	1,000
Toluene	0.016	560 ug/L		16
Trichloroethylene	0.4	ND	0.20 ug/L	400
Total Xylenes	1.4	320 ug/L		1,400
Semi-Volatile Organics				
Di-n-butyl Phthalate	0.08	ND	8 ug/L	80
Bis (2-ethylhexyl) Phthalate	0.012	ND	8 ug/L	12
3,3'-Dichlorobenzidine	0.002	ND	0.8 ug/L	2
Pentachlorophenol	0.005	ND	2 ug/L	5
Total PAHs	0.005	ND	5 ug/L	5
Misc Parameters				
Nonylphenols	0.02	ND	0.001 mg/L	20
Nonylphenol Ethoxylates	0.2	ND	0.005 mg/L	200

Sample Collected: 26/10/2023 Temperature: 5.7 C

HYDROLOGICAL REVIEW SUMMARY

STORM Sample Location: MW4

Inorganics		Sample Result	Sample Result with	
morganics		Sample Result	upper RDL included	
Parameter	mg/L			ug/L
pH	6.0 - 9.5	7.81		
BOD	15	3 mg/L		15,000
Phenolics 4AAP	0.008	0.033 mg/L		8
TSS	15	31 mg/L		15,000
Total Cyanide	0.02	ND	0.0050 mg/L	20
Metals				
Total Arsenic	0.02	ND	1.0 ug/L	20
Total Cadmium	0.008	ND	0.090 ug/L	8
Total Chromium	0.08	ND	5.0 ug/L	80
Chromium Hexavalent	0.04	ND	0.50 ug/L	40
Total Copper	0.04	11 ug/L		40
Total Lead	0.12	0.88 ug/L		120
Total Manganese	0.05	170 ug/L		50
Total Mercury	0.0004	ND	0.00010 mg/L	0.4
Total Nickel	0.08	2.5 ug/L	400 "	80
Total Phosphorus	0.4	ND	100 ug/L	400
Total Selenium	0.02	ND	2.0 ug/L	20
Total Silver	0.12	ND	0.090 ug/L	120
Total Zinc	0.04	15 ug/L		40
Microbiology				
E.coli	200	<10	10 CFU/100 mL	200,000
Volatile Organics				
<u>Parameter</u>	mg/L			ug/L
Benzene	0.002	510 ug/L		2
Chloroform	0.002	5.7 ug/L		2
1,2-Dichlorobenzene	0.0056	ND	0.40 ug/L	6
1,4-Dichlorobenzene	0.0068	ND	0.40 ug/L	7
Cis-1,2-Dichloroethylene	0.0056	ND	0.50 ug/L	6
Trans-1,3-Dichloropropylene	0.0056	ND	0.40 ug/L	6
Ethyl Benzene	0.002	130 ug/L		2
Methylene Chloride	0.0052	ND	2.0 ug/L	5
1,1,2,2-Tetrachloroethane	0.017	ND	0.40 ug/L	17
Tetrachloroethylene	0.0044	ND	0.20 ug/L	4
Toluene	0.002	560 ug/L		2
Trichloroethylene	0.0076	ND	0.20 ug/L	8
Total Xylenes	0.0044	320 ug/L		4

HYDROLOGICAL REVIEW SUMMARY

Semi-Volatile Organics		Sample Result	Sample Result with upper RDL included	
Di-n-butyl Phthalate	0.015	ND	8 ug/L	5
Bis (2-ethylhexyl) Phthalate	0.0088	ND	8 ug/L	8.8
3,3'-Dichlorobenzidine	0.0008	ND	0.8 ug/L	0.8
Pentachlorophenol	0.002	ND	2 ug/L	2
Total PAHs	0.002	ND	5 ug/L	2
PCBs	0.0004	ND	0.05 ug/L	0.4
Misc Parameters				
Nonylphenols	0.001	ND	0.001 mg/L	1
Nonylphenol Ethoxylates	0.01	ND	0.005 mg/L	10

Sample Collected: 26/10/2023

Consulting Firm that prepared Hydrological Report:

Temperature: 5.7 C

Qualified Professional who completed the report summary:

Print Name

Print Name

Qualified Professional who completed the report summary:

Signature

Dan Menard

Print Name

Signature

Dan Menard

Dan Menard

Dan Michael Dan Menard

Dan Michael

Groundwater Environmental Management Services Inc.

1764174 Ontario Inc. 2343 Eglinton Avenue West

Appendix F

Project No.: 23073

March 2025

SERVICING REPORT GROUNDWATER SUMMARY

The form is to be completed by the Professional that prepared the Servicing Report.

Use of the form by the City of Toronto is not to be construed as verification of engineering/hydrological content.

For City Staff Use Only:	
Name of ECS Case Manager (please print)	
Date Review Summary provided to	
to TW	

tolw				
A. SITE INFORMAITON		Included in SR (reference page number)	Report Includes this information City staff (Check)	
Date Servicing Report was prepared: March 14, 2	2025	Cover Page		
Title of Servicing Report: Functional Servicing and	d Stormwater Management Report	Cover Page		
Name of Consulting Firm that prepared Servicing	Report: Counterpoint Engineering	Cover Page		
Site Address 2343 Eglinton Avenue West Toronto, Ontario				
Postal Code				
Property Owner (identified on planning request for comments memo)	1764174 Ontario Inc.	Cover Page		
Proposed description of the project (ex. number of point towers, number of podiums, etc.)	The proposed mixed-use (commercial/residential) development consists of a forty-three (43) storey building with two (2) levels of underground parking.	Section 1.1 Background, Pages 4		
Land Use (ex. commercial, residential, mixed, industrial, institutional) as defined by the Planning Act	Mixed-use	Section 1.1 Background, Pages 4		
Number of below grade levels	The proposed underground will be two (2) levels.	Section 1.1 Background, Pages 4		

OZIVIOINO N		I	
Does the SR include a private water drainage system (PWDS)? PWDS: Private Water Drainage System: A subsurface drainage system which may consist of but is not limited to weeping tile(s), foundation drain(s), private water collection sump(s), private water pump or any combination thereof for the disposal of private water on the surface of the ground or to a private sewer connection or drainage system for disposal in a municipal sewer.	If Yes continue completing Section B (Information Relating to Groundwater) ONLY If Yes, Number of PWDS? ONE (Construction Discharge Only) (Each of these PWDS may require a separate Toronto Water agreement) If No skip to Sections C (On-site Groundwater Containment) and/or D (Water Tight Requirements) as applicable	♥YES ○ NO	
B. INFORMATION RELAT	ING TO GROUNDWATER	Included in SR (reference page number)	Report Includes this information City Staff (Check)
A copy of the pump schedule(s) for ALL groundwater sump pump(s) for the development site has been included in the SR or A letter written by a Mechanical Consultant (signed and stamped by a Professional Engineer of Ontario) shall be attached to the SR stating the peak flow rate of the groundwater discharge for the development site for all groundwater sump pump(s). This peak flow rate must be based on the pump schedule(s) that have been designed by the Mechanical Consultant. A template of this letter is attached in Schedule A. **If there is more than one groundwater sump they must ALL be included in the	To be provided during Private Water Discharge Permit Application by Dewatering Contractor	Section 4.0 Foundation Drainage, Page 9	
letters along with a combined flow**			
Is it proposed that the groundwater from the development site will be discharged to the	Sanitary Sewer	Section 4.0 Foundation	

sanitary, combined or storm sewer?	Combined Sewer Storm Sewer	Drainage, Page 9
Will the proposed PWDS discharge from the site go to the Western Beaches Tunnel (WBT)? *Reference attached WBT drainage map*	YES NO If Yes, private water discharge fees will apply	
Reference attached WBT dramage map	and site requires a sanitary discharge agreement.	
What is the street name where the receiving sewer is located?	Caledonia Road	Section 4.0 Foundation Drainage, Page 9
What is the diameter of the receiving sewer?	750 mm	Section 4.0 Foundation Drainage, Page 9
Is there capacity in the proposed local sewer system? YES NO	Are there any improvements required to the sewer system? If yes, identify them below and refer to the section and page number of the SR where this information can be found. If a sewer upgrade is required, the owner is required to enter into an Agreement with the City to improve the infrastructure? YES	Section 5.2 Proposed Sanitary Servicing, Pages 10-11
Total allowable peak flow rate during a 100 year storm event (L/sec) to storm sewer When groundwater is to be discharged to the storm sewer the total groundwater and stormwater discharge shall not exceed the permissible peak flow rate during a 2 year pre development storm event, as per the City's Wet Weather Flow Management Guidelines, dated 2006	L/sec Discharge to combined sewer	Section 6.2 Allowable Release Rate, Page 14

	LI OKI GROONDWATER SOMMAKI		
Short-Term Groundwater Discharge Provide proposed total flow rate to the sanitary/combined sewer in post- development scenario	The site will not be occupied during construction, no sanitary flow	Section 4.0 Foundation Drainage, Page 9	
Total Flow (L/sec) = sanitary flow + peak short- term groundwater flow rate	3.22 = 0 + 3.22 L/sec		
Long-Term Groundwater Discharge Provide proposed total flow rate to the sanitary/combined sewer in post-development scenario Total Flow (L/sec) = sanitary flow + peak long-term groundwater flow rate	Proposed building will be constructed watertight, no long-term groundwater discharge 12.44 = 12.44 + 0 L/sec	Section 5.2 Proposed Sanitary Servicing, Page 10	
Does the water quality meet the receiving sewer Bylaw limits? YES NO	If the water quality does not meet the applicable receiving sewer Bylaw limits and the applicant is proposing a treatment system the applicant will need to include a letter stating that a treatment system will be installed and the details of the treatment system will be included in the private water discharge application that will be submitted to TW EM&P.	Section 4.0 Foundation Drainage, Page 9	
C. ON-SITE GROU	JNDWATER CONTAINMENT	Included in SR (reference page number)	Report Includes this information City Staff (Check)
How is the site proposing to manage the groundwater discharge on site?	To be provided by dewatering contractor		

		IN ONOONDWATER COMMAN		
Has the above proposal been approved by:		TW-WIM		
	And			
	\circ	TW-EM&P		
	And			
	\circ	ECS		
	0	LC3		
If the site is proposing a groundwater	\circ	YES		
infiltration gallery, has it been stated that the				
groundwater infiltration gallery will not be				
connected to the municipal sewer?	\circ	NO		
A connection between the infiltration gallery/dry well and the municipal sewer is not				
permitted				
permitted				
Please be advised if an infiltration gallery/dry				
well on site is not connected to the municipal				
sewer, the site <u>must</u> submit two letters using				
the templates in Schedule B and Schedule C.				
Confirm that the infiltration gallery can				
infiltrate 100% of the expected peak				
groundwater flow year round, ensure that the				
top of the infiltration trench is below the frost				
line (1.8m depth), not less than 5 m from the				
building foundation, bottom of the trench 1m				
above the seasonally high water table, and				
located so that the drainage is away from the				
building.				
D. WATER TIGHT	REQU	IREMENTS	Included in	Report
			SR	Includes
			(reference	this
			page	information
			number)	City Staff
				(Check)
If the site is proposing a water tight structure:			N/A	
1. The owner must submit a letter using the tem	plate ir	n Schedule D.		

2. A Professional Engineer (Structural), licensed to practice in Ontario a must submit a letter using the template in Schedule E.	and qualified in the subject	
3. A Professional Engineer (Mechanical), licensed to practice in Ontario subject must submit a letter using the template in Schedule F.	o and qualified in the	
Provide a copy of the approved SR to Toronto Water Environ pwapplication@toronto.ca .	mental Monitoring & Pro	tection Unit at
Consulting Firm that prepared Servicing Report: Cou	Interpoint Engineering	
Professional Engineer who completed the report summary:	Abu Junayet Print Name	
Please note that this summary form is not a standalone document this summary form is appended too. This summary is p		•
Professional Engineer who completed the report summary:	Alou Junayot	March 14, 2025 A. JUNAYET 100129949 A. JUNAYET 100129949
	Signature	Date & Stamp